B.TECH..

TCS-503

FIFTH SEMESTER THEORY EXAMINATION 2009-10

" DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours =

Note: (i) ' Attempt all questions.

Total Marks: 100

(ii) All parts of a question should be attempted at one contlguous place.

1. Attempt ény four parts of the following:
(5 x 4=20)

" (@) Solve the recurrence relation using master
method: -

T(n) = 3T(n"'3) + log3"

Ans. Given equation is
) = 37T(n"">) + log 3"

Let m = Iog3n .
M=n D
Now 3"3 = i3 ’)

Put these values in the main equation.
' 7'(3"1) — 3T(3m/3) +m

Rename T(3") as 8(m) and T(37°) as 8(%)
&(m) = 38(-;%) +m

Compare with 5(m) = 05(1}1‘J + f(m)

here a=3,f=3,fim)=m
find (logaf) ;mlogss =m
here m('°"" D = f(m) thus case 2 exist.

So the solution is O (m log m)

O(log,n log log,n)

(b) Whatdo youAunderstand‘ by ‘stable’ sort?
Name two stable sort algorithms.

Ans, Stable sorting algorithms maintain the relative
order of records with equal keys. If all keys are different
then this distinction is not necessary. But if there are
equal keys, then a sorting algorithm is stabie if
whenever there are two records (let’s say R and S)
with the same kéy, and R appears before S in the
originallist, then R will always appear before S in the

 sorted list. When equal elements are distinguishable,

such as with integers, or more generally, any data where
the entire element is the key, stability is not an issue.

Example of stale sort algorithm are:
Counting Sort
Radix Sort -

(¢) Prove that Heapsort and Mergesort are
‘optimal comparison sorting algorithms.

Ans. Consider a decision tree of higher / with /
reachable leaves corresponding to a comparison sort

- of n elements. Because of each of the n! permutations

of the input appears as some leaf,
nt <1

Since a binary tree of height /4 has no moré that
2" leaves, we have

we have

nt <1<2*
h =z lg(n!)
h = Q (nign)

The O(nlgn) upper bounds on the running times
for heapsort and merge sort mater the Q(nlgn) worst
care lever bound. :

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

(d) Hlustrate the fu ilctioning of Heap sort on the following array:

A = (25,57,48,37,12,92,86,33)

Ans. 4 = (25,57, 48,37.12,92, 86, 33)

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

(¢) How can you inodify quicksort algorithm to
search an item in a list of elements?

Ans. We can use randomized select algorithm to
search an item in the list of elements which require
little modification in quick sort algorithm.

Randomized-select only works‘on one side of

the partition. This difference shows up in the analysis:

" whereas quicksort has an expected running time of
©(n lg n), the expected time of Randomized-select
is @(n).

Randomized-select uses the procedure
Randomized-partition introduced in. Thus, like
Randomized-Quicksort, it is randomized algorithm,
since its behavioris determined in part by the output
of a random-number generator. The following code for
Randomized-select retarns the ith smallest element of
the array A{P...r].

Randomized-select (4, p, r, i).
. Ifp=r ’
2. then return Afp]
3.- g « Randomized-partition (4, p, r))
4 keqg-p+1

S |
POOO OO

(@) ONENC

If i.= &, the pivot‘value is the answer
then return A{q}
elseif i < X%

then return Randomized-select (A, p, g ~ 1, 1)

o e NN

- else return Randomized-select (4, g + 1,7, i - k)

() What is the importance of ‘average-case

analysis’ of algorithins? '

Ans. Worst-case performance analysis and -
average case performance analysis have some
similarities, but in practice usually require different
tools and approaches. Determining what average input
means is difficult, and often that average input has
properties which make it difficult to characterise
mathematically (consider, for instance, algorithms that
are designed to operate on strings of text). Similarly,
even when a sensible description of a particular
“average case” (which will probably only be applicable

‘for some uses of the algorithm) is possible, they tend

to result in more difficult to analyse equations. Worst-
case analysis has similar problems: it is typically
possible to determine the exact worst-case scenario.

Instead, a scenario is considered such that it is at
least as bad as the worst case. For example, when

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

analysing an algorithm, it may be pos§ible_ to find the
longest pbssible path through the algorithm (by
considering the maximum nuntber of.loops, for
instance) even if it is not possible to determine the exact
input that would generate this path (indeed, such an
input may not exist). This gives a safe analysis (the
worst case is never underestimated), but one which is
pessimistic, since there may beé no input that would
require this path. Alternatively, a scenario which is
thought to be close to (but not necessarily worse than)
the real worst case may be considered. This may lead
to an optimistic resuit, meaning that the analysis may
actually underestimate the true worst case. In some

2. Attempt any four parts of the following:

situations, it may be necessary to use a pessimistic
analysis in order to guarantee safety. Often however, a
pessimistic analysis may be too pessimistic, so an
analysis that gets closer to the real value but may be
optimistic (perhaps with some known low probability of
failure) can be a much more practical approach. When
analyzing algorithms which often take'a small time to
complete, but periodically require a'tuch larger time,
amortized analysis can be used to determine the worst-
case running time over a (possibly infinite) series of
operations. This amortized worst-case cost can be
much closer to the average case cost, while still
providing a guaranteed upper limit on the running time.

(5 x 4=20)

(@) Twostacks are keptin a single array STK [MAX] to utilize the array memory optimally: STK |]:

1 2 : 3

Max-2 Max-1 Max

a, as

33 e — - == - ————e] b3 b2 b1

Fig. 1

First stack grows in forward direction from start whereéas second grows backwards from end.
Write PUSH 1, PUSH 2, POP 1, POP 2 for the two stacks.

Ans. PUSH1(STK, TOP1, TOP2, MAX; ITEM}

STEP 1: IF TOP1 + [=TOP2 OR TOP 1=MAX THEN .

WRITE “OVERFLOW” -
~ RETURN

STEP2: IF TOP | =0 AND TOP 2 = | THEN
WRITE “OVER FLOW"
RETURN

STEP3: [FTOP | =0 THEN SETTOP | = |
ELSE
SET TOP! = TOP1 +1
SET STK[TOP1]=ITEM
RETURN

STEP 4: END

L

PUSH 2 (STK, TOP1, TOP2, MAX, ITEM)
STEP 1:1F FOP2— | = TOP! OR TOP2 = | THEN
WRITE “OVERFLOW”
RETURN
STEP2: IF TOP2 = 0 AND TOP1 = MAX THEN
‘ WRITE “OVERFLOW®
RETURN
STEP 3: IF TOP2 =0 THEN
SET TOP2 = MAX
ELSE
SET TOP2 =TOP2-1
SET STK[TOP2] = ITEM
RETURN
STEP 4: END

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

POP1 (STK, TOP1, TOP2)
STEP 1: IF TOP1 =0 THEN _
WRITE “UNDERFLOW”
RETURN
STEP2: SET ITEM = STK[TOP!]
I TOPI=1THEN
SET TOP1 =
ELSE SET TOPI
RETURN ITEM
STEP 3: END /
POP2 (STK, TOP1, TOP2)
STEP 1: IF TOP2 =0 THEN
WRITE “UNDERFLOW”
RETURN
STEP 2: SET ITEM = STK [TOP2]
" IF TOP2=MAX THEN
- SETTOP2=0
ELSE SET TOP2 = TOP2 + |
RETURN ITEM
- STEP 3: END

(b) Define Red-black trees and state their
applications.

=TOP1 -1

~ Ans. Abinary search tree is a red-black tree if it
satisfies the following red-black properties:

1. Root node is always black.

2. Every node is either red or black

3. Every leaf(NIL) is black. _

4. Ifanode is red, then both its children are black.
5

. Every simple path from a node to a descendant
_leaf contains the same number of black nodes.

Application of red Black tree
Various applications of RB tree are as follows

1. Red Black Tree is a special type of self balancing
binary search tree. This is used as Syntax Trees
in major compilers and as implementations of

- Sorted Dictionary.

2. Red Black tree can be augmented to create order
statistic tree.

3. Red Black tree can be augmented to create
interval search tree. :

4. Order statistic tree constructed from the RB tree

can be used to search in /gn time.
(c) Prove that the maximum degree of any node
in a n-node binomial tree is log n.

- Ans. For the binomial tree Bk,

1. There are 2* nodes,

2. The height of the tree is &,

3. There are exactly nodes at depth ifori % 0, 1,
s k, and

4. The root has degree &, which is greater than
that of any other node; moreover if i the children
of the root are numbered from left to right by

—1,k-2,...,0, child / is the rcot of a subwee Bi.

Let # be the total no. of nodes and £ be the degree
of the binomial tree B, then the degree of the root
node is maximum which is equal to k

As from the properties of bmomlal tree, the
binomial tree B, has 24 nodes. ’ '

Thus n = 2"
Hence £ =

(d) Whatis a disjoint-set data structure ’l How
running times of disjoint set data strnﬁu res
is analyzed?

v

log,n = Ign

Ans. Disjoint set data structure: 4 disjoint-set
data structure maintains a collection of disjoint
dynamic sets. Each sct.is identified 1by a
representative, which is some member of the set. In
some applications, it doesn’t matter which meniber is
used as the representétive; we only-care that if we ask
for the representative of a dynamic set twice without
modifying the set betwzen the requests, we get the
same answer both times, in other applications, there
may be a prespeciticd ruie for choosing the
representative, such as choosing the smallest member
in the set {assuming, of course, that the elements can
be ordered). As in the other dynamic-set

Download AII Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

implementatiofis we have studied, each element of a
set is represented by an object. Letting x denote an
object, we wish to support the following operations:

+ Make-set (x) creates a new set whose only
member (and thus representative) is x. Since the
sets are disjoint, we require that x not already
be in some other set.

« Union (x, y) unites the dynamic sets that con-
tain ¥ and y, say Sx and Sy, into a new set that
is the union of these two sets. The two sets are
assumed to be disjoint prior to the operation.
The representative of the resulting set is any
member of Sx _ Sy, although many implementa-

tions of union specifically choose the -

representative of either Sx or Sy as the new
representative. Since we require the sets in the
collection to be disjoint, we ““destroy” sets Sx
and Sy, removing them from the collection.

¢ Find-set (x) returns a pointer to the
representative of the (unique) set containing x.

Analysing the running time: We start by computing,
for each object in a set of size n, an upper bound-on
the number of times tae object’s pointer back to the
representative has besn updated. Consider a. fixed
object x. We know that each time x’s representative
pointer was updated, x must have started in the smaller
set. The first time x's representative pointer was
updated, therefore, the resulting set must have had at
least 2 members. Similarly, the next time x's
representative pointer was updatéd, the resulting set
must have had at teast 4 members. Continuing on, we
observe that for any. & < n, after x's representative
pointer has been updated [lgk] times, the resulting
set must have at least £ members. Since the largest set

has at most » members, each object’s representative

pointer has been updated at most [/gn] times over all
the union operations. We must also account for
updating the head and tail pointers and the list lengths,

which take only (1) time per union operation. The total
time used in updating the » objects is thus O(nign).

The time for the entire sequence of m operations
foHows easily. Each MAKE-SET and FINDSET
operation takes O(1) time, and there are O(m) of them.
The total time for the entire sequence is thus
O(m + nign). - '

(¢) Show the results of inserting the keys:
ES,QKCLHTVWMRN

in order into an Empty B-tree with minimum

degree 2.
Ans. £SO KC LHTVWMRN
Minimum no. of keys at anode =7/—- 1= I-

Maximum no. of keys at anode =2¢ -1 =3

[F] = [F]s] = [F]a[s

' To.insert node C: Since node is full then before
inserting &, the root node must be split.

To insert L: Node is full and must be split. The
nuclein by a will more to parent node.

ToinsertH, T, K

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

To insert w = Nkote is full there before mining at node must be split ans middle by more lop.

(e
v[w]

Toinsert M

To insert RN

(N What is implied by angmenting a data-
structure? Explain with'an example.
Ans. Augmenting a data structure can be broken
into four steps:

1. Choosing an underlying data structure,

2. Determining additional information to be
maintained in the underlying data structure,

3. Verifying that the additional information can
be maintained for the basic modifying
operations on the underlying data structure,
and

4. Developing new operations.
- Example: Interval Tree

We can augment red-black tree to support
operations on dynamic sets of intervals. A closed
interval is an ordered pair of real numbers [1,, L],
with ¢, < t,. The interval {1, {,] represents the set

{t—R:t, St<1,}. Open and half-open intervals omit
both or one of the endpoints from the set, respectively.
In this section, we shall assume that intervals are
closed; extending the results to open and half-open
intervals is conceptually straightforward. Intervals are
convenient for representing events that each occupy
a continuous period of time. We might, for example,
wish to query a database of time intervals to find out
what events occurred during a-given interval. The data
structure in this section provides an efficient means
for maintaining such an interval database.

We can represent an interval {¢,, 1,] as an object
i, with fields low [/} = ¢, ithe low endpoint) and
high [i] = t, (the high endpoint). We say that intervals
iand ¢ overlap if i ¢~ ' # 9, that is, if low[i] £ high
{/'] and.low[i'] < high{/]. Any two intervals / and ./’
satisfy the interval trichotomy; that is,.exactly one of
the following three properties holds:

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

a. i and {' overlap,

b. iis to the left of '(i.e., high[i] < low[/']),

c. i i§ to the right of i'(i.e., high[i'] < low[{])
- Figure shows the three possibilities.

26126

19+420
17—19 25+ ———130
8149 16—121
6’ ‘|1o 15}“———""23
5—8
—3
0 5 10. 15 20 25 30
" (a)
' [16.21]
30 :
. mz
[125.30] star
20
[17.19] : [26.26}
25 B
[19.20]
20

Step 1: Underlying Data Structure

We choose a red-black tree in which each node x
contains an interval int[x] and the key of x is the low
endpoint, low[inf[x]]; of the interval Thus, an inorder
tree walk of the data structure lists the intervals in
sorted order by low endpoint.)

Step 2: Additional Information

In addition fo the intervals themselves, each node x
contains a value max{x], which is the maximum value
of any interval endpomt stored in the subtree rooted
at x.

Step 3: Maintaining the Informétion

We must verify that insertion and deletion can be
performed in O(Jgn) time on an interval tree of # nodes.
We can determine max[x] given interval inf[x] and the
max values of ‘node x’s children: max[x]
= max(high[intfx]], max{left[x]], max[right [x]]).

Download All Btech Stuff

(b)
Step 4: Developing New Operations
The only new operation we need in Interval-search
(T, i), which finds a node in tree 7 whose interval

overlaps interval i. If there is ho interval that overlaps
i in the tree, a pointer to the sentinel nif{7} is returned.

3. Attempt any two parts of the following:
' - (10 x2=20)
(a) When and how Dynamic Programming
approach is applicable?

Discuss the matrix-chain multiplication with
respect to Dynamic programming techmque.

Ans. Dynamic Programming
, Dynamlc programming, like the divide-and-
conquer method, solves problems by combining the
solutions to subpr obleMs The divide-and-conquer
algorithms partition the problem into independent
subproblems, solve the sub\problems recursively, and

then combine their solutlégns to solve the original
problem.

From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

In contrast, dynamic programming is-applicable
when the subproblems are not independent, that is,

when subproblems share subsubproblems. In this

context, a divide-and-conquer algorithm does more
work than necessary, repeatedly solving the common
subsubproblems. A dynamic-programming algorithm
solves every subproblem just once and then saves its
answer in a table, thereby avoiding the work of
recomputing the answer every tnme the subsubproblem
is encountered.

Dynamic programmmg is typical ly apphed to
optimization problems. In such problems there can
be many possible solutions. Each solution has a value,
and we wish to find a solution with the optimal
(minimum or maximum) value. We call such a solution
an optimal solution to the problem, as opposed to the
optimal solution, since there may be several solutions
that achieve the optimal value.

The development of a d);namic-programming
algorithm can be broken into a sequence of four steps.

1. Characterize the structure of an optimal
solution.

2. Recursively define the value of an optimal
solution.

3. Compute the value of an optimal solutlon in
a bottom-up fashion.

4. Construct an optimal solution from computed
information. -
Matrix-chain multiplication preblem
The matrix-chain multiplication problem can be stated
as follows: givena'chain {4,, 4,,...4,} of n matrices,
where for i = 1, 2,...,n, matrix Ai has dimension p, _,
x p,, fully parenthesize the product 4|, 4,,4, ina way
that minimizes the number of scalar multiplications.

Step 1: The structure of an optimal parenthesization
_FFor the matrix-chain multiplication problem; we
can perform this step as follows.

For convenience, let us adopt the notation A4 e
where i <J, for the matrix that results from evaluating
the product 4, 4; ,, A. Observe that if the problem is
nontrivial, i.e., I <Jj, then any parenthesnzatlon of the

product 4, A ; must split the product between A, and
A, . , for some integer k in the range i < k < /. That
is, for some value of k, we first computé the matrices
A;_,and A K+ 1-j and then multiply them together
to produce the final-product 4,._ ; The cost of this
parenthesization is thus the cost of computing the
matrix 4, _, plus the cost of computing 4, . _p plus

the cost of multiplying them together.
The optimal substructure of this problem is as

follows. -

_ Suppose that an optimal pérenthesization of
A4, A splits the product between A,.and 4, | ,.
Then the parenthesization of the “prefix” subchain
A; A; . | A, within this optimal parenthesization of
A A, A | must be an optimal. parenthesization of

A A A

Step 2: A recursive solution

We can give the recursnve solution to the equation as
follows:

o 0 o ifi=j
mliJY= 3 ‘min (mli, k}+ mik +1. 1+ poypap,) i<
) isk<j . - '
where m(i, j] be the minimum number of'scalar
multiplications needed to compute the matrix 4 i
"Step 3: Computing the optimal costs
-We can compute the optimal cost with the help

of the following algorithm:

MATRIX-CHAIN-ORDER(p)

.1« lengthlp] - 1

forie1lton

domli,i]«0

forl «2ton—1is the chain length
.doforz(—-lton I+1
.dojei+1-1

.mi, j] < o

fork«itoj—1

O 0 NN B W -

.do g« mli, K] + mlk+ 1,/] + p,_, Pip;
10.ifg<mli,j]

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

11. then mi, j1 ~ g ‘ Elements of the gréedy strategy
12 sfijlek i The various elements of the gfeedy strategy are

13. return m and s o 1. Determine the optimal substructure of the

Step 4: Constructing an optimal solution problemn.

We can construct an optimal solution as follows: > Develop a recursive solution..

3. Prove that at any stage of the recursion, one of

Print-optimal-parens (s, i,
P P 2 the optimal choices is the greedy choice. Thus,

_]' Ifi=j it is always safe to make the greedy choice.
2. then print “4”/ . i 4. Show that all but one of the subproblems induced
3. else print “(”) ' ' by having made the greedy choice are empty.
4. Print-optimal-parens (s, 4, s, /1) 5. Develop a recursive algorithm that implements
5. Print-optimal-parens(s, s[i, j} + 1,) the greedy strategy.

6. print)" - ' - 6. Convert the recurswe algonthm to an iterative

) ‘.Wha-t is “Greedy algorithm”? Write its algorithm,

pseudo code. Apply greedy algorithm on Applying greedy algorithm to the given graph
coloring the vertices of the following graph. We can apply the greedy algorlthm to the given graph
as follows: .

Step 1: First we color any of the vertices with a color
say, Red '

R
©
(&)}

&

. Ans. Greedy Algorithms

Algorithms for optimization problems typlcal ly go
through a sequence’of steps, with a set of choices at
each step. For many optimization problems, using Step 2: Now all the remaining vertices that can be
dynamic programming to determine the best choices colored with red are as: ‘
is overkill; simpler, more efficient algorithms will do. 4 '
greedy algorithm always makes the choice that looks
best at the moment. That is, it makes a locally optimal
choice in the hope that this choice will lead to a globally
optnmal solution. - R

_ Greedy algorithms do not always yield optimal G}
solutions, but for many problems they do.

| R
O

()
2/

[+

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Step 3: Now we select one of the refnaining vertices
and color it with a color say, Green

Step 4: Now the last vertex can be colored with green
color as given below ‘

R
(3

Hence, when we apply the greedy algorithm we
find that only 2 colors are needed to color the graph

(¢) Discuss backtracking problem solving
approach with the help of an example.

Ans. Backtracking is a general algorithm for
finding all (or some) solutions te some computational
problem, that incrementally builds candidates to the
solutions, and abandons each partial candidate
c(“backtracks”) as soon as it determines that ¢ cannot
possibly be completed to a valid solution.’

Backtracking is an important tool for solving
constraint satisfaction problems, such as crosswords,
verbal arithmetic, and many other puzzles. It is often
the most convenient (if not the most efficient)
technique for parsing, for the knapsack problem and
other combinatorial optimization problems. It is also
the basis of the so called logic programming languages
such as Icon, Planner and Prolog:Backtracking is also
utitized in the (diff) difference engine for the Media
Wiki software.

Backtracking depends on user-given “black box
procedures” that define the problem to be solved, the
nature of the partial candidates, and how they -are
extended into complete candidates. It is, therefore a -

~ materialistic rather than a specific algorithm although,

unlike many other meta-heuristics, it is guaranteed to
find all solutions to a finite problem in a bounded
amount of time.

Example: In the Eight Queens problem the challenge
is to place eight queens pieces from the game of Chess
on a chessboard so that no queen piece is threatening
another queen on the board. In the game of chess the
queen is a powerfulpiece and has the ability to attack
any other playing piece positioned anywhere else on
the same row, column, or diagonals. This makes the
challenge quite tricky for humans who often declare
after several failed attempts “...there can’t be any
solution!”. 4

However there are in fact ninety-two valid
solutions to the problem although many of those
ninety-two are symmetrical mirrors. All of the solutions
can be found using a recursive backtracking algorithm.
The algorithm works by placing queens on various
positions, adding one at a time until either eight queens
have been placed on the chess board or less than
eight queens are on the board but there are no more .
safe positions left on the board.

When the latter situation is reached the aloornthm
backtracks and.tries another layout of queens.

4. Attempt any two of the following: (10 x 2 = 20)

(@) Givenagraph G=(V,,E)andletV,and V
be two distinct vertics. Explain how to modify
Dijekstra’s shortest path algorithm to
determine the number of distinct shortest
path from Uto V.

Also, comment on whether Dijekstra’s
shortest path algorithm work correctly if
weights are negative. :

Ans. Dijkstra’s algorithm solves the single-source
shortest-paths problem on a weighted, directed graph
G = (V, E) for the case in which all edge weights are
nonnegative. Therefore, we assume that w(u, v) 2 0 for
each edge (u, v) in £.

Download All Btech Stuff From StudentSuwdha com

http://studentsuvidha.com/
http://studentsuvidha.com/

Dijkstra’s algorithm maintains a set S of vertices =~ 1. Initialize-single-source (G, 5)
whose final shortest-path weights from the source s 2.5« ¢
have already been determined. The algorithm

repeatedly selects the vertex u in {V, =S} with the 3. @4 V]

minimum shartest path estimate, adds .« to S, and 4. while O # ¢

relaxes all edges leaving . In the following 5.dou<——EXTRAéT-MlN(Q)
implementation, we use a minpriority queue Q of 6.5 S {u}

vertices, keyed by their d values.

. 7. for each vertex v_Adj[u]
- Dijkstra(G, w, 5) : :

8 dorelax (u, v, w)

@ - (e) T m
Figure, The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The shortest-path estimates
afe shown within the vertices, and shaded edges indicate predecessor values. Black vertices are in the set
S, and white vertices are.in the min-priority queue O = V — 8. '

(a) The situation just before the first iteration of the while loop of lines 4 — 8. The shaded vertex has the
minimum d value and is chosen as vertex u in line 5. :)

* (b)—(f) The situation after each successive iteration of the while loop. The shaded vertex in each part is
chosen as vertex u in line 5 of the next iteration. The 4 and n values-shown in part (f) are the final values.

Dijkstra algorithm fails if the graph contains the negative weight edges.

(b) Discuss Travelling sa!ésman Problem and various approaches to solve the problem with complexity
analysis of each. :

Ans. The traveling—salesnian problem

In the traveling-salesman problem, we are given a complete undirected graph G = (V, E) that has a connegative
integer cost c(u, v) associated with each edge (u, v) in E, and we must find a Hamiltonian cycle (a tour) of
G with minimum cost. As an extension of our notation, let c(4) denote the total cost of the edges in the subset
AnE. :

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

- In many pi'actica] situations, it is always cheapest to go directly from a place u to a place w; going by
way of any intermediate stop v can’t be less expensive. Putting it another way, cutting out an intermediate
stop never increases the cost. We formalize this notion by saying that the cost function ¢ satisfies the trtangle

inequality if for all vertices u, v, w in V,
ou, w) £ c(u, v) + c(v, w).
The triangle mequahty is a natural one, and in many applications it is automatically satlsﬁed We can solve
the traveling salesman problem with the help of followmg approximation algorithm
APPROX-TSP-TOUR (G, cn> _
1. seléct a vertex r (V' [G] to be a “root” vertex
2. compute a minimum spanning tree T for G from root » using MST-PRIM (G, c, r)
- 3. Let L be the list of vertices visited in a preorder tree walk of T
4. return the Hamilfonian cycle H that visits the vertices in the order L.

The figure below explains this algorithm.

(d) | R
Flgure The operation of APPROX-TSP-TOUR
(a) The given set of points, which lie on vertices of an integer grid. For example, fis one unit to the rtght
and two units up from /. The ordinary euclidean distance is used as the cost function between two points.
(b) A minimum spanning tree T of these points, as computed by MST-PRIM. Vertex a is the root vertex.
The vertices happen to be labeled in such a way that they are added to the main tree by MSTPRIM in

.alphabetlcal order.
(c) A walk of T; starting at a. A full walk of the tree visits the vertices in the order a, b, c, b, , b, a, d,
e f e g, e, d, a. A preorder walk of T lists a vertex just when.it is first encountered, as indicated by the dot

next to each vertex, yleldmg the ordering a, b, ¢, h, d, e, f, 8.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

(d) A tour of the vertices obtained by visiting the
" vertices in the order given by the preorder walk. This
is the tour H returned by APPROX-TSP- TOUR. lts
total cost is approximately 19. 074.

(e) An optimal tour H* for the given set of vertices.
Its total cost is approximately 14.715.

(c) Explain the Floyd Warshall algorithm with
Example. Which design strategy the
algorithm uses?

'Ans, The Floyd-Warshali algorithm

A different dynmniéprogramming tormuiation to
solve the all pairs shortest-paths problem on a directed
graph G = (K, E). The resulting algorithm, known as
the Floyd-Warshall algorithm, runs in ©(},) time. Here
. negative-weight edges may be present, but we assume
that there are no negative-weight cycles. We shalt tollow
the dynamic-programming process to develop the
algorithm. -

The structure of a shortest path

In the Floyd-Warshall algorithm, the algorithm
considers the “intermediate” vertices of a shortest path,
where an intermediate vertex of a simple path
P =V, VoV is any vertex of p other than v .or v, that
is, any vertex in the set {v,, v,,...,v, _}. The Floyd-
Warshall algorithm is based on the following
observation. Under our assumption that the vertices of
Gare V= {1, 2,..n}, let us consider a subset {1, 2...., k)
of vertices for some. For any pair of vertices i, j in V,
consider all paths from i to j whose intermediate
vertices are all drawn from {1,2,..., k}, and let p be a
minimum-weight path from among them. (Path pis
simple.):

The Floyd-Warshall algonthm explonts a
relationship between path p and shortest paths from
i toj with all intermediate vertices in the set {1, 2....,
k — 1}, The relationship depends on whether or not
k is an intermediate vertex of path p.

o If £is not an intermediate vertex of path p, then
all intermediate vertices of path p are in the set
{1,2,.4,k = 1}. Thus, a shortest path from vertex
i to vertex j with all intermediate vertices in the
set {1, 2,..., k— 1} is also a shortest path from

i to j with all intermediate vertices in the set
{1,2,.... k}. -

e If kis an intermediate vertex of path p, then we
break p down vertices in the set {1, 2,..., k}.

A recursive solution to the all-pairs shortest-paths
problem :

Based on the above observations, we define a recursive
formulation of shortest-path estimates. Let be the
weight of a shortest path from vértex i to vertex j for
which all intermediate vertices are in the set {1, 2,...,
k}. When k = 0, a path from vertex i to vertex j with
no intermediate vertex numbered higher than 0 has no
intermediate vertices at all. Such a path has at most
one edge, and hence. A recursive defmition following
the above discussion is-given by

wi if k=0

A = .
a’("”” if k=1

b |min(alf ", df "
Computing the shortest-path weights bottom upu

Based on recurrence, the following bottom-up
procedure can be usd to compute the values in order
of increasing values of . [ts input'is an n x n matrix
W. The procedure returns the matrix D(n) of shortest-
path weights.

FLOYD-WARSHALL (W)
1. n « rows[{W]

Ld0) « W
.forke-1ton
.dofori-1lton

.doforj-1ton
ook e ok ok

\I‘O\U\hwl\)

. returm D . .
5. Write short notes on any four of the following:
(5 x4=20)
(a) Approximation of a NP-complete problem.

Ans. We can explain the-approximation of a NP
Complete Problem by taking the example of vertex cover
problem as given below:

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Approximation Algorithm

If a problem is NP-complete, we are unlikely to find a
polynomial-time algorithm for solving it exactly, but
even so, there may be hope. There are at least three
approaches to getting around NP-completeness. First,
if the actual inputs are small, an algorithm with
-exponential running time may be perfectly satisfactory.
Second, we may be able to isolate important special
cases that are solvable in polynomial time. Third, it
may still be possible to find near-optimal solutions in
polynomial time (either in the worst case or on average).
In practice, near-optimally is often good enough. An

- algorithm that returns near-optimal solutions is called
an approximatéon algorithm.

Vertex-over problem
The vertex-cover problem

"The vertex-cover problem was defined as given a
vertex cover of an undirected graph G = (V, E) is a
subset V7 of set ¥ such that if (u, v) is an edge of G,
then either u € V" or v € V" (or both). The size of a
vertex cover is the number of vertices in it.

The vertex-cover problem is to find a vertex cover
of minimum size in a given undirected graph. We call
such.a vertex cover an optimal vertex cover. This
problem is the optimization version of an NP-complete
decision problem. Even though it may be difficult to
find an optimal vertex cover in a graph G, it is not too
hard to find a vertex cover that is near-optimal. The
following approximation algorithm takes as input an
undirected graph G and returns a vertex cover whose
size is guaranteed to be no more than twice the size
of an optimal vertex cover.. ‘

APPROX-VERTEX-COVER(G" >

. Ce«¢

E’ «- E[G]

while E' = ¢

do-let (¥, v) be an arbitrary edge of E’
Cle/CU {u, v} -

remove from E’ every edge incident on either
uory ' E

o

N U

7. returnC

- The figure below illustrates the operation of APPROX-VERTEX-COVER.

(e)

[} [

()

)

,
F—0 ®

1 0 ‘

’
| | ’

(@)

O—O—@
® F—0o

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

The running time of this algorithm is O(V + E),

using adjacency lists to represent £’. The figure shows"

the operation of APPROX-VERTEX-COVER.

(a) The input graph G, whlch has 7 vertices ahd
8 edges.

() The edge (b, c), shown heavy, is the first

edge chosen by APPROX-VERTEX-COVER.

Vertices b and ¢, shown lightly shaded, fire
added to the set C containing the véftex cover
. being created. Edges (a, b), (¢, €), and (c, d),

shown dashed, afe removed since they are

now covered by some vertex in C.

(c) Edge (e, f) is chosen; vertices € and f are

added to C.

Edge (d, g) is chosen; vertices 4 and g are

added to C.)

(€) The set C, which is the vertex cover produced
by APPROX-VERTEX-COVER, contains the
six vértices b, ¢, d, e, f, g.

C)

(/ The optimal vertex cover for this problem
" contains only three vertices: b, d and e.

(5) Randomized sorting algorlthm

Ans. The algorithm forthe Randomized-quicksort
is as given below: ‘

Randomized-quicksort (4, p,7) |

1. ifp<r

2. then g « Randomized-partition (,;1 B)

3. Randomized-quicksort (4, pg=1)

4 Randomized-quicksort (4, g+ 1,7)

inndomized-partition ,p,1)

L« Random (p,) '

2. exchanger 4A[r] & A[i’]‘”

3. retum partmon (,?1 p,r)

oy

Partmon “, p, r) P
1. xe A7)
2 iep-1

forj«ptor—1
doifd[jjsx

then i« i+ 1

eXchan_ge Ali} P Alj]
exchange A[i + 1] & Alj]
return i + 1

®© NS eWw

Analysis for finding the expected running time
Elements are coxﬁpared only to the pivot element
and, after a particular call of Partition finishés, the
pivot element used in that call is never again compared

to any other elements. N

Our analysis uses indicator random variables. We
defind
X;=1{zis compared to zj}, v
where we are considering whether the comparisbn
takes place at any time during the execution of the
algorithm, not just during one iteration or one call of
partition. Since each pair is compared at most once,

we can easily characterize the total number of
comparisons performed by the algorithm:

n-1 n
r-[5 5 x]
i=j=i+1

Taking expectations of both sides and then using
linearity of expectation, we obtain

n-1 n -
EXI=|), X X \
i=1j=i+]
n-1 n
= z E[X;]
i=lj=i+l’

Z Z Pr{z; is compared toz]
islj=i+l

1t remains to compute Pr{z, is compared to zj}.

It is useful to think abo_ut when two items are not
compared. Consider an input to quicksort of the
numbers 1 through 10 (in any order), and assume that

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

the first pivot element is 7. Then the first call to
partition separates the numbers into two sets: {1, 2,
3,4, 5,6} and {8, 9, 10}. In doing so, the pivot element
7 is compared to all other elements, but no number
from the first set (e.g., 2) is or ever will be compared
to any number from the second set (e.g., 9). In general,
once a pivot x is chosen with z; <x < z, we know that
z;and z; cannot be compared at any subsequent time.

If, on the other hand, z, is chosen as a pivot before any

other item in Z,t thenz; will be compared to each item
in Z;, except for ltself Similarly, if z is chosen as a
plvot before any other item in Z,, then z; will be
compared to each item in Z,,
example, the values 7 and 9 are compared because 7
is the first item from Z,, ; to be chosen as a pivot. In
“contrast, 2 and 9 will never be compared because the
first pivot element chosen from erg is 7. Thus, z, and
z; are compared if and only if the first element to be
chosen as a pivot from Z; is either z; or z,. We now
compute the probability that this event occurs. Prior
to the point at which an element from Z has been
chosen as a pivot, the whole set Z; is together in the
same partition. Therefore, any element of Z,.j is equally

likely to be the first one chosen as a pivot. Because .

the set Z; has j — i + 1 elements, the probability that
any given element is the first one chosen as a pivot
is 1/(j — i + 1). Thus, we have

Pr{z, is compared to z, } Pr{z orz is first pivot
chosen from Z, } :

B = Pr{z, is first pivot chosen from Z;}
+ Pr{zj is first pivot chosen from Z,.j}
1 ' 1 2
+ =
j=i+l J=i+l

Jj—i+l
The second line follows because the two events

are mutually exclusive. Combining equations we get
that

except for itself. In our -

We can evaluate this sum using a change of
variables (k = j — i) 'and the bound on the harmonic
series in equation

Z O(lg n) O(n lgn)

Thus we conclude that, using Randomized-
partition, the expected runmng time of quicksort is
O(n lg n)

© Proving the problem of finding maximum

clique of a graph to be NPC.

Ans. Proof: To show that CLIQUE e NP, for a
given graph G =(V, E), we use the set V' V of vertices
in the clique as a certificate for G. Checking whether
V' is a clique can be accomplished in polynomial time
by checking whether, for each pair #, v € V', the edge
(u, v) belongs to E.

We next prove that 3-CNF-SAT < P CLIQUE,

~ which shows that the clique problem is NP-hard. That

we should be able to prove this result is somewhat
surprising. Since on the surface logical formulas seen
to have little to do with graphs.

- The reduction algorithm begins with an instance
of 3-CNF-SAT. Let ¢ = C, ~.C, * -~ ~ C, be a boolean
formula in 3-CNF with & clauses. Forr='1,2, ..., keach
clause C has exactly three distinct literals /", 4y, and
. We shall eonstruct a graph G such that ¢ is
satlsﬁable if and only if G has a clique of size &.

The graph G = (V - E) is constructed as follows.
For each clause C, = (/" v Ly v L) in ¢, we place
a triple of vertices v", v,” and v;" into V. We put an
edge between two vertices V', and v/ if both of the-

following hold.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

. v'r and 'v; are in different triples, that is, r # s, and
e their corresponding literals are consistent, that is I is not the negative of Isf.
This gréph can easily be computed from ¢ in polynomial time. A an example of this c{pnstruction, if
- we have : :
d=(x; v mx, vox) N (X VX, Vox,) XV Xy VX))

then G is thé' graph shown in Figure below.

C1 = X1VV X v X3

Co =% Vo v X3 C3=X1VX2VX3

We must show that this transformation of ¢into G is a reduction. First, suppose that ¢ has a satisfying
assignment. Then each clause C, contains at least one literal /" that is assigned 1, and each such literal
corresponds to a vertex v/, Picking one such “true” literal from each clause yields a set ¥ of k vertices. We
claim that V" is a clique. For any two vertices v v € V. where r+ s, both corresponding literals /" and /?
.are mapped to 1 by the givén satisfying assignment, and thus the literals cannot be complements. Thus, by
the construction of G, the edge (v/, vj’) belongs to E. s

Conversely, suppose that G has a clique V” of size £. No edges in G cor_mect vertices in the same triple
and so " contains exactly one vertex per triple. We can assign | to each literal /" such that vj’ € V' without
fear of assigning 1 to'both a literal and its complement, since G contains no edges between inconsistent literals.
Each clause is satisfied, and so ¢ is satisfied. (Any variables that do not correspond to a vertex in the clique
may be set arbitrarily.)

() Problem classes and their implications.

Ans. We have the following classes of problems

P Probicms '

The class P consists of those problems that are solvable in polynomial time. More specifically, they are
problems that can be solved in time O(nk) for some constant k, where # is the size of the input to the problem.

NP Problems ‘

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

The class NP consists of those problems that are

“verifiable” in polynomial time. What we mean here is
that if we were somehow given a “certificate” of a -

solution, then we could verify that the certificate is
correct in time polynomial in the size of the input to
the problem. For example, in the Hamiltonian-cycle
problan , given a directed grph G = (V, E), a centificate
would be a sequence <v|, v,, v, ... V|, > of | /] vertices.
It is easy to check in polynomial time that (v, v,)
in E fori=1,2,3,...//]- 1 and that (v, v|) - E as
well. As another example, for 3-CNF satisfiability, a
certificate would be an assignment of values to
variables. We can easily check in polynomial time that
this assignment satisfies the boolean formula.

PC Problems A decision problem Cis NP~
complete if; ~

1. C is in NP and

2. Every problem in NP is reducible to C. in
polynomial time can be shown to be in NP.by
demonstrating that a candidate solution to C can be
verified in polynomial time: 5
' p Hard '

Problem is NP Hard if it necessanly sansfy the
condmon given above.

(¢) Maximum Flow Problem,

Ans. Let N= (¥, E)be anetwork with s and ¢ being
the source and the sink of N respectively.

The capacity of an edge is a mapping c: £ -> R",
denoted by ¢, or c(u, v). It represents the maximum
amount of flow that can pass through an edge.

.

- A flow is a mapping f: E — R", denoted by £, or
Ku, v), subject to the following two constraints.
LSy S €, fOT each (u, v) € E{capacity constraint)
2.Zc, o € B, = =y, Vv, u) € By foreachv e v/

{s, 1} (conservation of flows) . . ’
The value of flow is defined by |f| = Zv € vf,,

where s is the source of N. It represents the amount
of flow passing from the source to the sink.

s

The maximum flow problem is to maximize |/}, that
is, to route as much flow as possible fromstor. ~

We tise Ford Fulkerson method to solve the
problem of maximum flow: - . ')

‘Pseudocode for Ford-Fulkerson algorithm:

The algorithin takes as arguiﬁent a graph, a source

. vertex and the target vertex.

Ford-Fulkerson (G, s, 1)

1. for each edge (u, v) . E[G]
2.doflu, vl <0

3.f[v, u] 0

4. while there exists a path p from s to ¢ in.the
resndual network G,

5. do cj(p) « min {cj(u, v): (u, v) is in p}
6. for each edge (u, v) inp -

ST dofTu, v] & fTu, vl +cdp)

XFV u) «—flu, v}
Under this assumption, a straightforward

‘implementation of Ford-Fulkerson runs in time O(E}/*),

where f* is the maximum flow found by the algorithm.
() Knuth-Morris-Pratt algorithm for pattern
_matching. '
Ans. The Knuth-Morris-Pratt algorithm

" KMP-MATCHER calls the auxiliary. procedure
compute-prefi ix-function compute .

KMP-MATCHER(T,P)
1. n'(-j length [7]
2. m « length [P} B
* 3.1« COMPUTE-PREFIX-FUNCTION (P)
4. 9«0 :
Number of characters matched. i
5. fqr ie1 ton ,
Scan the text from left to right.
6. do while ¢ > 0 and P[q + 1] # T]i]

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

7. do q « nlq]
" Next character does not match.
8.ifPlg+1]=Tli]
9. thengeq+1
Next character matches.’
10.ifg=m '
Is all of P matched?

11. then print “Pattern occurs with shift” i — m

12. q « nfq] Look for the next match.
COMPUTE-PREFIX-FUNCTION(P)
1.m « length [P]

2. 11} <0

k<0

4.forqe«2tom

5. do while k> 0 and P{k + 1] # Plq]

6. do k « nfk] |

7.if Plk+ 1] = Plq)

S8.thenkek+1'

9. nfg] « k

10. return ©

Prefix function for the pattern P = ababbabaa

Running-timé analysis

The running time’ of COMPUTE-PREFIX-
FUNCTION is ©(m), using the potential method of
amortized analysis. -

A similar amortiied'analysis, matching time of
KMP-MATCHER is©(n). ~

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

