B.Tech.

e nt o rre 2o
SIXTH SEMESTER EXAMINATION, 2009-10j

COMPILER DESIGN

TCS-502
Time : 3 Hours/ [Total Marks : 100

Note : (1) Attempt all questions,

Q. 1. Attempt any two parts of the following : 10x<2=230

(a) Explain all the necessary phases and passes in a compiler design. Write down
the purpose of each pass. What is bootstraping ?

Ans. Phases of compiler : The compilation process is divided into a series of
subprocesses called phases of compiler. A phase is a logically cohesive operation that take as
input one representation of the source program
and produces as output another representation.

Lexical Analyser : The first phase called
the lexical Analyser or scanner is the interface
between the source program and the compiler.
The lexical analyser reads the source program
one character at time, separates character of the
source program into groups that logically belong ‘
together called lexems, The category of lexemes is
called tokens. Each token represents a sequence
of characters that can be treated as a signal
logical entity. The usua) tokens are

Source program

Lexical analyser
Syntax analyser

! intermediate code

Symbaol
table i generator

[
Cuode vptimization

Error
handier

Keywords
Constants Target program
Operatprs Phases of compiler

Punctuation symbols 3

Syntax Analyser : The syntax Anayser groups tokens together into syntatic structure. -
For example, the three tokens representing A + B might be group into a synatatiure structure’
called an expression. Expressions might further be combined to form statements, Often the
syntatic structure can be regarded as a tree whose leaves are the tokens. The interior nodes of
the tree represent strings of tokens that logically belong together.

Intermediate code generator : It uses the structure produced by the syntax analyser to
create a stream of simple instructions. Many styles of intermediate code are possible. One
common style uses instructions with one operator and a small number of operands. This style of
intermediate code is called three-address-code.

e.g. The three address code for the statement

A\VB.Cis

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Ti:=A\B
i T:z = Tl «C

Cpde Optimizer : This 15 an optional phase designed to improve the intermuediate code so
that ultimate object program runs faster andfor takes less space. Its output is another
intermediate code program that does the same jobs as the original but perhaps in a way that save
time and/or space.
e Generator : This phnse produces the object code by deciding on the memory
locations for data, selecting code to access each datum, and selecting the register in wiich each
computgtion is to be done Designing a code generator that produces truly efficient object
is one of the most difficult parts of compiler design, both practically and theorctically,
ble management or bookkeeping : It keeps track of the names used by the program
and records essential information about cach. Such as its type (integer, real ctc) the data
structute used to record this information is called a symbol table,
rror Handler : The Error Handler is invoked when a flaw in the source program is
detected. It must warn the programmer by issuing a diagnostic and adjust the information being
pagsed from phase to phase so each phase can proceed.

he purpose of passes : In an implementation of compiler, portions of one or more phases

are combined into a module called a pass. A pass reads the source program or the output of the
previous pass, makes the transformations specified by its‘phases, and writes output into an
intermediate file, which may then be read by a subsequent pass. If several phases are ground into
one pass, then the operation of the phases may be interleaved, with control alternating among
several phases, - ’

ootstrapping : Suppose we have a compiler Cﬁ‘q for & language L written in machine

language A and produces the object code for machine A .
Now suppose we want to produce another compiler for L to run on mackine B to produce
code for B.

We can easily write a compiler C;E‘B in L for language L that produces code for machine B,
Since I} Language is available on machine A the compiler C,{“B can be compiled on A

{e C{'B »-+|Cﬁ‘4 -> CﬁB {Cross compiler)

We have got CﬁB a cross-compiler which run on machine A and produces ohiect code for
ine B.
OW We.run Cfﬂ through this cross-compiler to produce the desired compiler for L that

e o] 2 o) NI
ootstrapping of a compiler.
1. (b} What do you understand by lexical-analyzer generator and

s. Lex is a program generator designéd for lexical processing of character input/output
. Anything from simple text search program that looks for pattern in its input-output file
tv a ‘C) compiler that transforms a program into optimized code.

n program with structure input-cutput two tasks occur over and over. We divide the
input gutput into meaningful units and then discovering the relationships among the units for C

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

program the f_;mits are variable names, constants, and strings. This division into units {called
tokens) is known as Lexical Anaiyzer or Lexing. Lex helps by taking a set of descriptions of
possible tokens n producing a routine called a Lexical Analyzer or Lexer or Scanner. The set of
descriptions given to lex are called lex specification. The Token description that the lex uses are
known as Regular Expressions. When we write a lex specification we create a set of pattern
which lex matches against the input-output. The lex program divides the input-output into
string which we cail Tokens,

1p —— ! LEX | — o

Working of Lex :

Lexical

' . - ! . f ' e |
| lLexSource —u LEX P Analyzer —>| C Compiter

r] 1P Text i—-—_p Lexical

: Analyzer Prog.
5 y

O/P Token
i Text
Q. 1. fc) Write short notes on: '

(i) Context free grammars. Give the examples of context free grammars.

Ans. The context free grammar came into existence in 19656 by Chomsky. A context free
grammar describes a language by recursive rules known as productions. A context free grammar
can be described as:

CFG ¢onsist of four touples namely

V.- 8pt of variables (Non-terminals)

T — Set of terminals

§ -» Starting symbol

P -5 8et of Productions

These all are represented in the form of G (V, T, P, 8) context free grammar in the furm of
A —» a, whete ‘A’ is a Non Terminal & ‘o’ is denoted by {VU T)*,

Accogding to Question, for example generate palindrom for binary number

V={y;

T={bl

S={§

Production : § - aS|bSja [ble

Q. 1./(c) (ii) Parse trees. Give an example of parse tree.

Ans.| We can create a graphical representation for derivations that filters out the choice
regarding replacement order. This representation is called the parse tree, and it has the
important purpose of making explicit the hierarchical syntatic structure of sentences that is

implied by Fhe@ANI@R A All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Now, According to Question, for example :
Expression : id + id * id
EH»E+E

Eid+E b ' / L
E-bid +E*E / \ |
E-bid+id*E E - E £ * L
Edid+id*id | / \ / \ |
Pitve tree for the above i £ | . | N b
expression *
Parse tree are of two type I I I |
shown ds abeve i.e. left most id id id id
derivation and right most (a} (h)
derivation, i _
Q; 2. Attempt any two paris of the following : 10x<2=20
() Explain about basic parsing techniques. What is top down parsing ?
s, Parsing is a technique that takes as input string W and produce as output either a

a sentence of grammar. The goal of parsing is to determine the syntatic validity of a seurce string.
If the string is valid, a tree is build.
' ere are two types of parsing :
1., Top down Parsing 2. Bottomup Parsing
w, according £o question the description of top down Parsing,

Tp find the left most derivation for the input string W. Since string W is scan by the parser
left to right, one symbol at a time. Left most generate the leaves the parse tree in left to right
order which match the input order. Top down Parse to find the left most derivation for input
string. Bagically in top down mechanism every terminal symbol generating by some production of
the grammar is match with the input string symbol pointed to by the string marker. If the match
is succegsful the parse can continue if a mismatch occurs then gone wrong, We will reject previous
string & then string marker is reset to the position when the rejected production was made. This
is knowh as back tracking’ And back tracking is one of the major drawback of top down Parsing
left recursion & left factoring comes under the top down parsing.

2. (b) Explain the following:

{J) Constructing SLR parsing tables. (ii) Constructing LALR parsing tables.

{i) INPUT C, the canonical collection of sets of items for an augmented grammar G.
UTPUT : It possible, an LR parsing table consisting of a parsing action function ACTION
function GOTO, :

OD : Let C={l.].....1,} . The states of the parser are 0, 1, n, state i being

ed from [;. The parsing actions for state { arc determined as follows:

parse }e for W. If W is a valid sentence of grammar or an error message indicating that W is not

3) If{8' = 8§ is in I;, then set ACTION [i,$ }to “accept”.

any conflicting actions are generated by the above rules, we say the grammar is not. SLR
{1}. The algorithm fails to produce a valid parser in this case.

e goto transitions for state i are constructed using the rule :

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

() If GOTO (J;, A) =1, then Goto[i, A] = j

(5> Alj entries not defined by rules (1) through (4) are made “error”,

16) e nitial state of the parser is the one constructed from the set of items
containing [$ —.5] '

(ii) INPUT : A grammar G augmented by production 8 -» §

OUTPUT : The LALR parsing tables ACTION and GOTO

METHOD: (1) Construct C =4I, I|...... I, } the collection of set of LR {1} items.

(2} Fiar each core present among the sets of LR (1) items, find all sets having that core, and
replace these sets their union.

(31Lgt C' ={Jy, Sy, ... J) be the resulting sets of LR {1} items.-The parsing actions for
state | are constructed from J, in the same manner as in Algorithm LR. If therc is a
parsing-action conflict, the algorithm fails to produce a parser, and the grammar is'said not to be
-LALR (1

{4} The GOTO table is constructed as follows, If J i3 the union of one or more sets of LR(1}
items, i.e.,JJ =1 Ul; U Ul,, then the cores of GOTO Y, X3,

GO’{Q {1s. X,

GO'LOU’*, X are the same,

sinde i},), I all have the same core. Let k be the union of all sets of items having the
same corelas GOTO (1), X4 Then GOTO (], X)=K

The table produced by this algorithm is called the LALR parsing table for G. If there are no
parsing adtion conflicts, then the given grammar is said to be an LALR (1} grammar.,

Q. 2. (¢) How do you implement the LR parsing tabies ? Why do we need LR
parsing dables ?

Ans. LR Parsing table can be divided into two parts:

(1r{Action table (2} Goto table

Degcription of Action table :

(HIftA > a. aBlis in 1§

goto (1,,a) =I; then

setl action “,v a) to shift 1(8))

(2Y Reduce

If(A - «.) is in I; then for energy b in follow (A}
sef action [1;.) =reduce A -> a.(Ry, k)1is the number of production A — o in grammar)
(3] accept :

(s S)is in Z;
set acuion [1;, $] = accept
Description of Go To table:
{1pif gotoif;, A)=1;
get goto [I;, A} = j
{2} No entry — error.

ed of LR parsing Table:

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Therefare many different parsing tables that can be used in an LR parser for a given
grammar. Sdme parsing tables may detect errors sooner than others, but they all accept the samw
sentences, CFCtI}Y the sentences generated by the grammar. The three different LR is easicst to
imptement dnfortunately, it may fail to produce a table for certain grammars on which the other
methods suceeed.

The speond method, called canonical LR, is the most powerful and will work on & very large
loss of grai rs. Unfortunately, the canonical LR method can be very expensive to implement.
The third njethed, called look ahewd LR (LALR for short), is intermediate in power between the
SLR and theé canonical LR methods. The LALR method will work on most programming language
grammars gnd, with some effort, can be implemented cfficiently.

Q. 3./ Attempt any two parts of the following : 10 2=20

(a) at is the intermediate code in Syntax-directed Translation ? What is a
syntax tree 7 Give an example of syntax tree,

Ans.! In many compilers the source code is it - (hen - clise
translated into a language which is intermediated :
in complexity between a programming language / \

and mnachifie code. Such a language is therefore

called interinediate code. It is possible to translate

directly m source to machine or assembly / \ / \ / \
language it a syntax-directed way but, as we have p oo

mentioned,| doing so rnakes generation of optimal,

or even rekatively good, code a difficult task. Four / \ / \
kinds of intermediate code often used in compilers

are postfix notation, syntax trecs, quadruples, and

tripies. Onje such variant of a parse tree is what is calied an syntax tree, a tree in which each leaf

represents/an operand and each interior node an operator.
For example: The syntax tree for the statement ifa =bthen ar=c+delseb:~c -d

Q. B. (b) Wkat is postfix translation ? Explain it with a suitable example.

Ank. We have called a translation scheme postfix if for each production A — o, the
transiatian rule for A, CODE consists of the concatenation of the CODE translations of the
non-terminals in @, in the same order as the non terminals appear in a, followed by a tail of
output. We have seen that postfix translations can be implemented by cinitting the tail as each
productij% is recognized. Therefore, to reduce space requirements, it is quite, useful that CODE
be a postfix translation, for if not, we must use a scheme like generation of a parse tree, followed
by a wallt of the tree, to produce the intermediate-language form of the source program.,

Fgr example:

-(be+)—>a* -be+
3. {¢) Explain the following:
Effect of the statements that alter the flow of control (of a program) in

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Ans.

We fix nur
names and

(i} The translation of source statements that effect the flow of control in a program.
attention on the generation of quadruples, and the notation regarding translation filed
ist-handling procedures from that section carriers over to this section as well.

Unconditional Jumps: We can describe the syntax of labelled statements with
productions such as : '

S
“1AB
The

ILABEL :S
OL —1d
demantic action associated with LABEL -» id is to

(1) Install that identifier in the symbol table if it is ‘¢ already there,
i2) Rpeord Lhat the quadruple referred to by this label is the current value of NEXTQUAD,

and finally

131 back patch the list of goto’s whose targets are the label just discovered.
Struftured Flow-of-Control Constructs:

Som

g difficult example of flow of control are nested or structured control statements

S--Statement

[—Statement list
A—apsignment statement
F—Boolean—valued expression,
‘1) §—> ifEthen S

(2)8|-» ifF then Selse S
{3158]-» WhileE do S

(4) 8-> begin L end

i5S-= A
8- LS
7]

(i)

.,;
ﬂh}le of array references in Arithmetic Expressions : In this we expand on that

translation, permitting array refercnees as operands one approach is to leave a reference such as A{), j]
intact in the intermediate code, leaving it to the code-generation phase to produce object code that

computes t

offset of A [1. j] from the base of array A and then performs an indexing operations.

Grajmar for Array References
A L=E
L - |idd{elist]|id

elist
I -
Thu

-+ eiist. ETE
-~ EE)L _
4 is, an assignment statement A is an l-value followed by an assignment symbol

followed by|an expression E . .
Q. 4. Attempt any two parts of the following : 10x2=20

{a)

at information is represenied by symbeol tables ? Explain the data structure

for symbo] tables.
Ans., Information represented by symbol table are :

¢ The entries in the symbol table are for declaration of names.

L
e

en an occurrence of a name in the source text is looked up in the symbol table the
try for appropriate declaration of that name must be returncd.

¢ The scope rule of the source language determine which declaration is appropriate.
e Asimple method is to maintain a separate symbol table for each scope.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

he symbel table for a procedure or scope is the compile time equivalent of an activation
cord.

nformation for the non locals of a procedure is found by scanning the symbol tables for
he enclosing procedures following the scope rules of the language.

Tust closely nested seope rules can be implemented by adapting the data structures as
iscussed before.

+ Block must be aiso be numbered if the language is block structured.
Ddta Structures For Symbol Tables Are : The three symbol-table mechanisms we
discuss in this section are linear tists, trees, and hash tables .

Lists : The conceptually simplest and easicst-to-implement data structure for s symbol
table is the linear list of records depicted. We use a single array, or equivalentiy several arrays to
store names and their associated information. New names are added to the list in the order in
which they are encountered. To retrieve information about a name, we search from the beginning
of the array upto to the position marked by pointer AVAILABLE which indicates the begining of
the empty portion of the array.

Search Trees : A more efficient approach to symbol-table arganization is to add two link
fields, LEFT and RIGHT to each record. We use these fields to link the records into a binary
search tree. This tree has the property that all names NAME § accessible i
from NAME ¢ by following the link LEFT ¢ and then following any " Name'l
sequencg of links will precede NAME 7 in alphabetical order taymbolically, ————
NAME j < NAME i), Similarly, all names NAME & actessible starting with P oy
RIGHT|i will have the property that Name «Name K > i Name?2

lgorithm to lock:for NAME in a binary search tree, where P is prrar—

initially a pointer to the root. F__ﬂl_g_z____
(1} while P = nuil do i :
(2)if NAME = Name (P} then - -.--/" NAME found, take action on |
succesy “/ ' . —_—
) else if Name < Name (P) then P : LEFT (P} . Namen
* vigit left chiid #/ : " nton

4) else/* Name (PY< Name #/ P: = RIGHT (P) Available - "
“ if we fail through the loop, we have failed to find Name #

ash Tables : Many variations of the A linear list of records

tmportant searching techniques known as Binary tree search routine

hashiflg ‘have been implemented in T Name 1|
compilers. Here we shall consider a rather _

simplg variant. Even this scheme gives us Datal @

the capability of performing m accesses on n N,f,',"l':_, Link 1 \
nameg in time proportional to n(n + myk h Name 2

This method is generally superior to linear

lists or search trees and is.the method of Data 2 '\
choicj for symbol tables in most situations, N] lLink 2 Y
especially if storage is not particularly costly.)

Q4. () Explain the Hash table Name 3
Implementation of simple stack Data 3
allocation scheme while Run-Time Link3 Y
administration. ‘ Available ————p] D Y Starage

| table

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Ans. | Implementation of A simple Static area for programs
Stack-Allocation Scheme ; As an introduction to ' and global (static) data
stack allocation, we are going to consider an
implementation of the UNIX programming language,
while allows somewhat simpler implementation than Top—» P
some other stack-oriented languages like ALGOL. Extra storage for R Direction of

‘ Data in C can b.e global, meaning it is allocated SP—a | Activation record for R grouth
static storage and available to any procedure, or local, : T
meaning it ¢an be accessed only by the procedure in Extra storage for Q
which it is declared. A program consists of a list of
global data |declarations and procedures; there is no
block structure or nesting or procedures. However, Extra storage for P
recursion ig permitted, so local names must be Activation record for P
allocated space on a stack.

Starting from the highest numbered available
memory Jocation is the run-time stack shows a procedure P, which has called procedure @ which,
in turn, has|called procedure R.

We show two pointers to the stack, which are actually permanently allocated registers.
One, called) the stack pointer (8P), always points to-a particular position in the activation
resource for the currently active procedure. The second, called TOP, always points to the top of
the stack.

Q. 4. () Explain the following. Give examples also :

(i) Lexical phase errors (ii) Syntatic phase errors.

Ans. lexical -Phase Errors ; The function of the lexical analyzer is to carve the steam of
characters constituting the source program into a sequence of tokens. Each token class has a
specification which is typically a regular set. If, after some processing, the lexical analyzer
discovers that no prefix of the rémaining input fits the specification of any token class, it can
invoke an error-recovery routine that can take a variety of remedial actions.

Unfortunately, there is no one remedial action that will ideally suit all situations the
problem of recovering from lexical errors is iurther hampered by the lack of redundancy at the
lexical level| of a language. The simplest expedient is to skip erroneous characters until the lexical
find another token.This action will likely caiise the parser to see a deletion error.

Syntatic-Phase Errors ; Often much of the eorror detection and recovery in a compiler is
centered arpund syntax analysis. One reason is the high degree of precision we can achieve in the
syntatic specification of programming languages using context-free grammars. From a grammar
_ we can generate a parser that recognizes exactly the language specified by that grammar.
Violations of the syntatic specification will be caught automatically by the parser. Although a
considerable amount of theoretical and practical effort has been expended in exploring recovery
and repair techniques for syntatic errors, the optimal strategy for any programming language is
still an open question .

A papser detects an error when it has no legal move from its current configuration, which is
determined by its state, stack contents and the current input symbol.To recover from an error a
parser shopld ideally locate the position of the error. correct the error, revise its current
configuratipn, and resume parsing. All existing methods approximate this ideal and will resume
parsing, but there is never a guarantee that the error has been successfully corrected.

Q. 5/ Attempt any two parts of the following : 10 x 2 =20

(a) Explain the following in the organization of the code optimizer:

Download All Btech Stuff From StudentSuvidha.com

Activation record for Q

http://studentsuvidha.com/
http://studentsuvidha.com/

(i) l ontrol flow analysis (ii) Data flow analysis (iii) Transformations.

Ang, Control flow analysis : The translation of source statements that effect the flow of
control in a program we discuss what code to generate for unconditional jumps and for
“structured” flow-of-contrel constructs sach as if then and while statements. We fix our attention
on the generation of quadruples and the notation regarding translation filed names and
list-hand¥ing procedures from that section carriers over to this section as well.

(ii} Data flow analysis : In order to the code optimization and a good job of code
generatiqn, a compiler needs to collect information about the program as whole and to distribute
this information to each block in the flow graph. For example, we need to know that variables
are live dn exist from each block could improve register usage and how ecould we use knowiedge
of global|commen sub expressions to eliminate redundant ampitations and we also need to know
how a compiler could take advantage of reading definitions, such as knowing where a variable
like debyig was last defined before reaching a given block, in order to-perform transformations
like constant folding and dead-lock elimination. These facts are the data-flow information that
an optimizing compiler, eollects by a process known as data-flow analysis.

Data-flow information can be collected by a program setting up and solving systems of
information or equations that relate information at' various points in a program. A typical
equation has the form :

out {S] =gen(S] U Gin [(Si-kill {S1)

and can be read as, “the information at the end of a statements is either generated within
the statement, or enters at the beginning-and is not killed as control flows through the
statements”. Such statements are called data-flow equations,

ransformations ;: Transformations.are like a translator that takes as input a program
written(in one programming language (the source language) and produces as output a program in
another language (the object or target language).

ther transform a programming language into a simplified language, called intermediate
code, which can be directly exccuted using a program called an interpreter.

o, there are basically the transformation which are used in compiler.
., 5. (b) Explain the optimization of basic blocks. Also explain the DAG
represeniation of basic blecks.
Optimization of basic blocks : Firstly basic block By, By and flow graph is shown below

Prod =0
| 1=1 ' B
I
Ty =4*1
Ts =Add (A) -4
T3 =T2 [T]]
T,=Add (B)- 4
Ts=Ty (T] [—*B,
To=T3*Ts
PROD =PROD + Ty,
I=1T+1

if I <20 goto By
By

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

and the required optimization of basic blocks are shown in the below figures.

Prod =0 B, Prod =0 i— By
I=1
T.:=Add (A} - 4 T, =Add(A) - 4
) L'_"Bs 2 '—FB3
T,: =Add(B)— 4 T, =Add(B)-4
¥ | T, =0 =B,
T =4*1 +
Te =Ty [T Ty =T, ()]
T T T .5, Ts =Ty [T &
PROD|: =PROD + T, T =T* Ts
I=T41 Prod: =Prod + Ty
C/ifléi!OgotoBg if; <76 goto By

Now,
. Diree
basic blnck.
used in subd
a good way
used inside
biocks could
A dag
1. Ld
op
le
1
Ny
th
de|
The ¢l

(s,
(2)S,
(3) S,
4)5,
(5) S5
(6)S,
(7 Sy

the DAG representation of basis block :

fed acyclic graphs are useful data structures for implementing transformation on
A dag gives a picture of how the value computed by each statement in a basic block is
equent statements of the block. Constructing a dag from three address statements is
of determining commeon subexpressions within a block, determining which names are
the block but evaluated outside the block, and determining which statements of the
have their computed values used outside the block.

for a basic block is a directed acyclic graph with the following lobes on the nodes:
aves are labelled with identifiers either, variable names or contanis from the
erator applied to a name whether the 1-value or r-value of a name is needed; most
ves represent r-values.

terior nodes are labelled by an operator symbol.

ides are also.optionally given a sequence of identifiers for labels. The intention is
at interior nodes represent computed values, and the identifiers labelling a node are

(8} Sg
o p

O
{lﬂ)gr= 1+

emed to have that value,

hree address code representation are :
=4t

=add (A)-4

=$,[5]

=4[

= aid(B)- 4

=5;5(S4}

=$3% S,

=PROD + S

D=Sg

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

+ 8, PROD

/N

S/ /. A
mn(// A \/ \ s r)l

add (A

=5,

(IR 20 0t (1)

HNow, the DAG representation of three address code, _
Ql 5. (c) Explain what constitutes a loop in a flow graph and how will you do loop

1) there is a conditional or unconditional jump from the last statement of B to the first
statement of B; or,

(3) B, immediately follows By, in the order of the program, and B, does not end in an
unconditional jump.
en we perform code optimization, however, we may move quadruples from block to block
to create new blocks, so an extension of the quadruple array is necessary if the quadruples in each
block ate to be kept in consecutive storage. An alternative is to make a linked list of the
quadruples in each Llock. '

he running time of a program inay be improved if we decrease the length of une of its

loops, especially an inner loop, even if we increase the amount of code outside the loops. '

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

