B.Tech.

IEIXTH SEMESTER EXAMINATION; 2004-2003]

COMPILER CONSTRUCTION

Note ; (i} Attempt ALL questions.
{1} Al guestions carry equal marks.
(iif) In case of numerical problems asswme data wherever not provided.

Q. 1. Answer aay two parts of the following :
Q. 1. (a; What is a traaslator ? Discuss the role of various phases of the compiler in the transiation of

source program to object code.
Ans, A compiler is a program that fromulate a high-lcvel language program inlo a functionally equivalent

low-leve! langurage program. So compiler is basically a translator whose source language is a high-level language
and the target language is a low-level language i.e. a a complier is used to implement a high-level language on a

computer.
P Source Program

!

Lexical analyzer

Y

Syntax analyzer

Nt Semantic analyzer —
Ercor handier

Symble-table manager
4

~— —

Intermediate code generator

k 4

Code optimizer

oy

Code generator

'

Target program

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

A compiler operates in phases, each of which transforms the source program from one representation to
another. :
i. Liner Aanalysis in which the stream of character making up the source program is read from lefi-to-right
and prouped into tokens that are sequences of characters having a collective meaning.

2. Hierarchical analysis is called parsing or syntax analysis. Tt involves grouping the tokens of the source
program into grammatical pharases that hre used by the complier to synthesize output,

3. The semantic analysis phase cheks the source program for semantic errors and gathers 1ype iformation
for the subsequent code-generation phase. [t uses the hierarchical structure determined by the syntax-analvsis phase
to identify the operators and operands of expressions and statements.

4. The intermediate representation can have a variety of forms. Three-address code in an example of
intermediate code, which is like the assembly language for a machine in which every memory location can act ltke a
register. Three address code consist of a sequence of instruction each of which hasat most threc operands.

5. The code optimization phase attempts to improve the intermediate code, no faster-running machine code
wilt result, Some optimizations are trivial.

6. The final phase of the complier is the generation of target code, consisting normally of relocatable
machine code or assembly code. .

Q 1. (b) Explain cross compiler, Suppose you have a working C compiler on machine A. Discuss the
steps you would take to create a working compiler for another language C' on machine B.

Ans. Cross-compiler : — A compiler that run on one computer but produces object code for a different
type of computer. Cross compilers are used to generate software that can run on computer with a new architecture or
on special purpose device that cannot host their own.compilers.

Suppose we have a new language L, that we want to make available on machine A and machine B. As a first
step, we can write a small compiler : SC;, which will translate an S subset of L to the object code for machine A,
written i a language available on A.

We then write a compiler *C%, whichis compiled in language L. and generates object code written in an S
subset of L for machine A. But this will not be able to execute unless and untill it is translated by *C'}; therefore, "C7
is an input to *C4, producing a compler for L that will run on machine A and self generated code for machine A : *C}

SC; — SC: —_— L C:
Now if we wnat to produce another compiler to run on and produce code for machine B, the compiler can be
written itself in L and made avilable on machine B by using the following steps :
LCE — LC: —_ L Ci
1 cf —_ Lcﬂ —_—— I.C:
Q 1. (¢) Give the algorithm subset construction and computation of e-closure. Using these alogorithms
find the DFA for regular expression :
(a|b)* a(afb|e)
Ans. Subset construction Algorithm:—
initially, - closure (So) is only state in Dtate and it is unmarked.
while there is an unmarked state T in Drate do begin
mark T;
for each input symbol a do begin
U : e~ clousure {move (T,, a} »;
if u is not in Dstates then
add U7 as an unmarked states to Dstates;

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Dwan [Ty,a}=U

end
end.
Computation of € - closure :—
Push ail states in T onto stack;
inivialize g-closure (TH to T;
while stack is not empty do begin
pop t, the top element, off of stack;
for each stuate u with an edge from t to u labeled € do
if u 1s not in g-closure (T) do begain
add u to &- “losure (T);

push u onto stack
end;

end;
Regular Expression (a|b)*a(albfe)
g-closure (g}=41,2,3,5,8}=A

e- closure (move (A, a)) = € ~ closure (4, 9)
=1{4,7,8,2,3,59,10,11,13, 5, 16,18}
=1{2,3,4,5,7,8,9,10,11,13,15,16, 18} =B

£- closure (move (A b)) = ¢ closure (6)

=1{6,7,.8,2,3,5}
=12,3,5678}=C

- closure {move (B, a)) = &- closure {4,9, 12}

=12.3,4,57,8,9,10,1},12,13,15, 16,17, 18} =D
£~ closure {move (B, b)) = £- closure (6, 14))
={2,3,56,7,8,14,17.18}=E

g- closure {move (, a)) = £- closure {4,9)=18

g- closure {(move (C, b)) = e- closure (6) = C

g- closure (move (D, a)) = e- closure (4,9, 12,)=D

&- closure (move (D, b)) = - closure {6, 14} = E

e~ closure {move (E, a)) = g-closure (4,9)=B

€- closure (move (E, b)) = &- closure (6) = C

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Transition table

State / Input
A

m T N ®w
=2 v B -~ R e R v < I 4
Amoaom O e

DFA for regular Expression (a|b)*a{a|b|z)
2. Answer any two parts of the following :
Q. 2. (a) Discuss the operator-precedence parsing alogrithm, Consider the following operator
grammar and precedence functions; explain the parsing of input string id + id* id.
Grammar : E-» E+E |E*E{(E) | id
Precedence functioas :

+ * id S
f 4 2 4
8 3 1 5

Ans-— Operator- precedence parsing Algorithm :—

Input :— An input string W and a table of precedence relations.

Output :— If w is will formed, a skeletal. parse tree, with a placeholder non-termial E labeling all migrior
nodes; otherwise, an error indication,

Method :— Initially, the stack contains $ and the input kniffer the string w$. To parse, We execute the
following program : —

(1} set i, to point the first symbol of w§

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

(2) repeut forever

{3) 1 § is on top of stack and J, points to $ than retum

elsc begin .

{4) let a be the topmost terminal symbol on the stack and let b be the symbol pointed to by 4.
(5rita<bora =bthen begin

{&) push b wnto the stack,

(7} advance i 1o the next input symbol end;

(8)cise1fa> b then

(9) repeat

(19} pop the stack

(1 1) untilt the top stack terminal is related by < to the terminal most recently popped.
(12} clsc error ()

cnd,

Now the operator precedence relation for given precedence function table

+ * id
+ - E-d 4 =3
* < -3 < o
id > > 4 S
$ < < -
Grammer

ESE+E

E-E*E

E —(E)

E-—id

input steing : id +ad + id
fcidp+<id>*<id? §
afier reducing above cxpocssion
E+E*E
E+E
E
Q. 2. tb) Consider the following grammar,
G:“E—-E+T|T
T—-T*F|F
Fo(E)lid
{i) Reinove the left recursion.
(i} Compute the FIRST and FOLLOW sets of non-terminals of the resulting grammar.
{iti) Show the resulting grammar is LL (1).
(iv) Constuct LL (1) parsing table for the resulting grammar.

Ans—

G: E-E+T|T
T T*F|F
F - (E)}id

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

(iy Eliminating the immediate left recursion.
E- TE
E'->TE e
To>FT
"S> *FTY:

F— (E)/id

(i) First (E) = First (T) = First (F} = { ¢, id}

First (E") = {+, £}

First (TY=1{*,¢} .

Follow (E) = Follow (£')=1{),$ }
Foliow (T} = Follow (T = { +,), 8 }
Follow {(F}={+,%,}%$ }

(i) Fiust(+TEY.nFist(e)={+}{e}=4¢
First (T+ E')Y Follow (EN = {+} {), $,} = ¢
similarly
First (* FT')~ First (&) = {*} ~ {e} = ¢
First (* FT') ~ Follow (T") > {*} A {+,), $} =4

Similarly

First (CE) } ~ First {id) = {{} m {id}= ¢

Hence the grammeris LL (1) .
(iv)

Non-terminal Input symbol
id + * () 3

E E—~TE E =TE'
E' E'-s+TE Eoe E—¢
T T>FT T-»FT"
T T € T = *FT Toe T ¢
F F—id F — (E)

Q. 2. (c) Discuss algorithms for computation of the sets of LR (1) items. Also show that the following
grammar is LR (1) but not LALR (1).
G: $->Aa| bAc| Bel| bBa
A=>d
B—-d
Ans, Construction of the sets of LR(1) items : —
Algorithm :— Input :— Angumented grammer
Output : — Canonical collection of sets of LR (I} items.

1.Cyy=¢
2. add closure ({§, = .8,8 })toc
whileCy=C_, do

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

temp= C_-C,,

Cot = Coew

for every [in temp do

for every Xin V U T (i.e. for every symbol X) do

if goto (1, X} 1s not empty and not in { new, then add goto (1, X)to C,,,,
}

4.C=C_,
Grammer G :—
S -+ Aal bAc| Bc |bBa
A—d
B—-d
l,: §-—s.58§
S ——.A1,$:8—8.,3
S-—s .bAc, $
§-——.B¢, %
S—-.bBa$
A—a . d a
B~ .d, ¢
1,: Goto(state 0, d)= A —>d ., a
B—>d.c
I,: Cote (state 0,b) =8 —— b . Ac¢, $
S—sb.Ba$
A—>dc
A—>d.,a

1,: Goto(state 2, d)=A——d ., ¢

B—>d.a

LALR (1) Parser

Mergue lookahead forstate 2 and state 4 in {R(1) parser to create new siate

state = merge (statel, state 3)= A—>d.,a

A—>d., ¢
B——d.c
B—b>d.,a

Reduce/Reduce conflict forl lockahead “a" and "c¢" i.e. cann't decide whether to reduce dto A or B

this is not LALR (1)

Q. 3. Aaswer any two parts of the following :

Q. 3. (a) Consider the grammar of Q. No. Zb. Associate semantic rules with the productions for
construction of syntax tree for an expression. Using the translation scheme construct the syatax tree for the
expression

at b*c
Ans. Grammer ;: G
E—E+T/T
T—> T*F/F

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

F—(E)/id
Syntax— Directed for synatx tree

Production

Semantic rule

E-—E +T
T— T, *F
E—T
T—F
F— (B)

F— id

E . nptr = mk node ("+, E, . nptr, T. nptr)
T. nptr = mk node (**', T, . npir, F. nptr)
E.nptr=T. nptr
T.nptr=F. nptr
F.nptr =E . nptr
F.nptr = mkleaf (1d, id.entry)

syntax tree fora+b *c

.-E
f' ! -
- 'L
L7 o
- .]
- +
.- '
- r
]
npir !
13
13
nptr '
)
L]
t
¢ F]
! v y
L]
. +
)

s RPN e Rt BT U R
-
3
=

a
-

LemmTm T T. npr
P L | -~
- ‘a’ [e
- to Tl
" . \ -
T . nptr fe -1
| :
F. nptr ¥
) 1
% ERERES
; 1
Id! i :
! ’/]
1 - 3
| .- \
1 . L
] F 1]
* ¥ 1
Fl L]
id | b Y
A

z ja------

Q. 3. (b) Consider the following grammer for array references. Give syntax directed translation
scheme to genetate three address codes for addressing array elements. Translate the statement X = A [L).
Where lower bounds of | and c are I and 1, upper bounds are 10 and 20 respectively.

Grammar :
S§S—L:=E
E— E+E] ()L
L —> Elist] | id
Elist —> Elist,E | id [E
Ans. Grammer G ;
S—=L:=E

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

E—E+E
E ~— (E)
E——L
L. — Elist }
L—>id
Elist — Elist, E
Elist—id[E
Synatx directed translation scheme of above grammer is as :
S—— L:=E {ifL. offset = null then
emit (L .place’':="E . place)
clse
emit (L .place''L.offset’)':="E place)}
E— E, + E, { E. place : = newtemnp;
emit(E . place’: = E,. place"+ " E, place)}
E——(E,} { E.place= E,. place)

E—— L {ifL . offset = null then
E.place: =L . place
else begin
E . place : = newtemp;
emit (E .place':='L .place'["L.offset'')end)
L— Elist] { L. place := newtemp ;
L. . offset : = newtemp ;
emit (L . place” : = "¢.(Elist . array)) ;
emit { L . offset’: ="Elist . place ' ** width (Elist . array))
L-———id {L . place : = id . place; :
L . offset : = null }
Elist— Elist, , E { {t ;=newtemp ;
m: = Elist; . ndim+ 1 ;
emit(t ' :="Elist, . place ’ * " limit (Elist, . arvary, m) };
emit{1':="t"+'E placc);
Elist. avrary : = Elist, . assary,
Elist .ndim:=m }
Elist —— id [E { Elist . assary : = id. place ;
Elist . place : = E. place;
Elist. ndim : =1 }
Three address code for
X=Al1i]
lower bound are 1,1
upper bound are 10, 20
: t,=i*20
=+
t,=c 1* constat = base, - 84 *)
t,=4%t,
RTINS
[x=1,]

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Q. 3. (c) Franslate the following program segment into three-address statements :
switch (a+ b) '
{
case2: {x=y;break:}
case 5 : {Switch x
{
Case0: [a=b+1; break;}
Casel:{a=b+3; break:}
default: {a =23}
}
break;
cased: {x=y-1:break;}
default : {a =23}
}
Ans. The three address code is
(I)t,=a+b
(2) goto (23)
G)x=y
(4) goto NEXT
(5) goto {14)
(6)t,={b+1)
(Na=t,
{8) goto NEXT
{9Ht,=b+3
(10)a=t,
(11) goto NEXT
(12ya=2
(13} goto NEXT
(14) if x =0 goto (6)
(15)ifx = | goto (9)
(16) goto (12}
(17) goto NEXT
(18)t, = -1
{19 x=t,
{20) goto NEXT
(21)a=2
(22) goto NEXT
{23)ift,=2 goto (3}
(24)ift, = 5 goto (5}
(25)ift,= 9 goto (18)
(26} goto (21)
Q. 4. Answer any two parts of the following :
(a) What is symbol table ? Discuss the various approaches used for organization of symbol table,
Ans. Symbol Table : — A symbol table is a data sturcture used by a compiler to keep track of scope/binding
information about name, This information is used in the seurce program to identify the various program elements
like variables, constants, procedures, and tabels of statements. The symbol table is reached every time a name is
encountered in the source text. When a new name or new information about an enisting name is discovered, the

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

content of symbol table changes. Therefore a symbol table must have an efficent mechianism for accessing the
information build in the table well as for adding new entries to the symbol table.

Various data structure to symbol table organiszation : —

1. The Jiner list : — A linear list of record is the easiest way to
implement a symbol table. The new name are added to the table in the order name,
that they arvive. Whenever a new name is added to the table, the table is first
searched lineartly to cheek whether or not the name is already present in the info,
table. 1 the name is not present, then the record for new name is errated and
added to the list at a position specified by the available pointer. name,

The average number of comparison, P, required for search are p =
(n+1)/2 for successful search and p = n for an unsuccessful search, wheren is info,
a records in symbol table. The advantage of this crganization is that it take
less space and addiotion to table are simple. Disadvantage is that it has a Available -——3]
higher accessing time.

2. Search tree ;— The search tree is a more efficient approach to
symbol tabie organization. We add two links left and right in each record and thése link point to the record in gearch
tree.

Whenever a name is to be added, the first name is searched in tree. If it does not exist, then a record for the
new name is created and added at proper position in the scarch tree, This organisation has the property of
accessibility, i.e. all the names accesible from name, will, by following a left link, precede name, in alphabetical

Left | Name,| Infor | Right

Left | Name,! Infor { Right Left | Name,| Infor | Right

l l l |

order. Similarly for right link. The expected time necded to enter n names and to make m qureries is proportionat to
{m+ n)log, n’; so for greator number of records (higher n) this method has advantage over linear list organization.

3. Hash table : — A hash table is a table of k pointers numbered from zero to K-1 that point to the symbol
table and a record within the symbeol table. To enter a narne into symbol table, we find out the hash value of the name
by applying a suitable hash function.

The hash function maps the name Y
into an integer between zero end K-1 1
and using this value as an index in the

hash tab%e, we search the list of the '_"_'_"[Name T Info J ,]

symbol table records that is built on ¥

that index. If name is not is not [-Name [Info I , I
present in that fist, we create a record
fpr name and insgrt it at ‘thc hcaq of ___>L Name] Info l | l
list. When retrieving the information ¥
associated with the name, the hash K—1

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

value of the name is first obtained and then the hist that was built on this hash value 18 searclied for mformanon about
the name.

Q. 4. (b) Explain activation record and display structure. Show the activation records and display
structure just after the procedure catled at lines marked x and v have started their execution. Be sure to
indicate which of the two procedure named A you are refering to :

Program Test;
Procedure A;
Procedure B;
Procedure A;

end A;
begin
Y:A;
end B;
begin
B;
end A;
begin
X:A;
end Test;

Ans. Activation record : — Information needed by a single execution of a procedure is managed using a
contiguous block of storage called an activation record or frame, consisting of collection of fields. Not «lf lunguages.
nor all compilers use all of these fields; of ten register can take place of one or more of them.

The purpose of the fileds of an activation record is'as follows, starting from the field for temporuries.

Returned value

R e i T T T R

Local duta
T Temporaries

1. Temporary value, such as those anising i the evaluanon of expressions, are stored in the field for
temporarics.

2, The field for local
data holds data that is local to
an exccution of a procedure, - Test »

3. The field for saved Teost

machine status holds

: . A inside test
information about the state of

the machine just before the

procedure 1s called. This ! — B I

information inclucdes the — A inside test
values of the program Procedure .

counter and machins 0 A inside B 0 v

registers that have to restored Disol
when control retums from 1splay (At x marked)
the procedures. (At y marked)

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

4. The optional acess link is used to refer to non-local data held in other activation records.

5. The optional control link points to the activation record of the caller

6. The field for actual parameters, is used by the calling procedures to supply parameter to the called
procedures.)

7. The field for returned value is used by the called procedure to return a vatue to the calling procedure.

The sizes of each of there fields can be determined at the i+ e a procedure is called.

Q. 4. (¢) Discuss the folling storage-allocation strategles :

(i) Stack allocation

{ii} Heap allocation

Auas. (i) Stack allocation : — Stack allocation is based on the idea of a control stack, storage is organized as
a stack and activation records are push and poped as activation begin and end respectively. Storege of local in each
call of a procedure is constained in the activation record for that call. Thus locals are bound to fresh stroage in each
activation, because a new activation record is pushed on the stack when a call is made, The values of locals are
deleted when activation ends; i.e. the valeus are lost because the stroage for locals disappear when ihe activation
record is popped.

Ex : Position in activation tree | Activation Records on the stack Remark
S S
"aarray frame for s
s _ 3 r is activated
yd r Wl iamy "
L T o :
i:integer
-8) Frame for r has been popped and q
L7 4 ArTay (1, 9) pushed
r l _9{L% __
q(1,9) K :i-n;eger }
,#8 5 ,
P a: array Control has just retumed 1o q (1,3)
r h__q.(‘.'-g)--..
q(1,9) | i:integer
S IKITE
P(L,9) i:integer
4 {1,3)
P, 3)
af(l, 1O)

(ii) Heap allocation : — The stack allocation strategy cann't be used if either of the following is possible:
|. The value of local names must be retained when an activation ends.
2. A called activation actives the caller.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Heap allocation parcels out pieces of contiquous storage, as needcd for activation record or other objects.
Pieces may be deallocated in any order no over time the heap will consist of altemnate areas that are free and in use,

Ex : Position in activation tree Activation records on the stack Remamk
-5 : s - Retained activation record for r
e . Control link
'
b9y b N\ | ____ T
| _Control link _ _
L a9
| _ Control link _ _

Q. 5. Answer any two parts of the following :
(a) Consider the following sequence of three address code :
()PROD : =@
@)l:=1
3T =a
4T, : = addr (A) - 4
71 :=TIT)
(6) T, : = addr (B) -4
MT:=TIT)
BT, =TT,
(9) PROD : = PROD + T,
(10)1:=1+1
(1) i1 <=20go to(3)
(i) Find the basic blocks and construct a flow graph,
(ii) Eliminate common subexpressions,
(iif) Move the loop-invarient compuiation out of the loop.
(iv) Find the induction variables and eliminate them where possible.

Auns.
[{1] Prod=0 B
=1
1
T=4*1 B,
T, =addr (A) -4
T=T(T]
T, = addr {B) - 4
T.=T.[T]
T=T*T,
Prod=Prod + T,
1.=1+1
ifi<=20goto(B,}

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

G Prpd';o B,
1=

y
T,=addr (A)-4 | B,

T, = addr (B) ~ 4

h A

T=4%1 B,
T,=T[T]
T,=T,(T]
T=T*7,
Prod = Prod + T,
1=i+1

if 1< = 20 goto (B,)

(iii) Prod=0 | B,

T, =addr {A) - 4 B,
T, = addr (B) -'4

v

Temp=4*| Prcheader

F—-

ey
o 3
3
=

SH3

-
=]

L] 3 5
Prod = Prod + T,
[=i+1

if 1< =20 goto (B,)

{iv) Prod=0 | B,
i=1

3

T, = addr (A)— 4

T, = addr (B) - 4

v

Temp=4

y

T, =T, [Temp]

T, =T, [Temp)
T=T"T

Prod = Prod + T,
Temp = Temp + 4

if temp < =20 goto B,

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Q. 5. (b) Construct DAG for the following code sequence :

E:=*P

*Pi=A:|l]

Assume that :

(i) P can point anywhere

(it) P Points to only Bor D

L0 not forget to show the implied order constraints.

Ans. (i) (i)
Ry

s

addr (P)

addr (A)

Q. 5. (c) Semantic Errors

Context free Grammer

(i) Semantic Errors : —Semantic errors can be detected both at compile and at run time. The most common
semantic error that.can be detected at compile time are errors of declaration and scope.

Typical'excamples are undeclared or multiply- decleared identifiers.

Type incompatibilities between operators and operands and between formal and actual parameter are
another common source of semantic errrors, that can be detected in many languages at compile time. The amount of
type checking that can be done depends on the language at hand.

(ii) Context free Grammer : —CFG notation specifies a context-free language that consist of terminals,
non-terminal, a start symbol and productions.

Terminal are nothing more than takens of the language, used to form the language constructs. Non-
Terminals are variables that denotes a net of string,

Therefore context-free grammer is a four-tuple denoted as :—

G=(\TRS)

Where

V =is finite set of symbol called as non-terminal of variables,

T = is a set of symbol that are called as terminal

P = is a set of production,

S is a member of V, called as start symbol.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

