B. Tech.

FIFTH SEMESTER EXAMINATION, 2006-07

COMPILER DESIGN

Time : 3 Hours

Mote : (i) Answer ALL questions.

(ii) Al questions carry equal marks.

{iii) In case of numerical problems assume data
wherever not provided.

(iv) Be precise in your answer.

Q. L. Attempt any four parts of the follow-
ing: Sx4=20

(a) Discuss therole ¢f compiler-writing tools.
Describe various compiler writing tools

Ans. For compiler writing basically two tools.

are used:

(i LEX : for writing the lexical analyzer.

(i) YACC : for generating a parser with the abil-
ity to automatically recover from the errors,

The input for LEX is regular expression speci-
fying the token to be recognized and generates a C
program as output that acts as a lexical analyzer for
the tokens specified by the inputted regular expres-
sHon.

When YACC-generated parser encounters an
error, it finds the top-most state on its stack, whose
underlying set of items includes an item ofthe from A
—> errors. :

(b) Describe the techinique used for reducing
number of passes.

Ans. The number of passes, and the grouping of
phases into passes, are usually dictated by a variety of
considerations germane to a particular language and
machine.

Since each phase is a transtission on a stream
of data representing an intermediate form of the
source program. Several phases can be combined
into one pass without reading and writing of interme-
diate files. In same cases one pass produces its output
with little or no memory of prior inputs. In other
cases, we may marge phases into one pass by means
of a technique known as back patching,

Total Marks : 100

(¢) Discuss the role of Macros in program-
ming languages.

Ans, Many assembly (or programming) Yan-
guages provide a “macro” facility whereby a macro
statement will translate into a sequence of assembly
language statements and perhaps other macro state-
ments before being translated into machine code.
Thus, a macro facility is a text replacement capabil-
ity.

(d) Discuss the aspects of high level Ian-
guages which make them preferable to machine
or assembiy language,

Ans. A high level programming Janguage
mal’es the programming task simpler. A high level
programming language allows a programmer to ex-
press slgorithms in a more natural notation that
avoids many of the details ofhow a specific computer
function,

(e) Describe basic structure of compiler.

Ams. A compiler takes ar input a source pro-
gram and produces as output an equivalent sequence
‘ Source Program

Lexical analysis

]

/ Syntex analysis
!
Table | Intermediate Code | | Ermor
generation Handeling
N
Code optimization /

v
Code generation

+

Target Program
Phases of a compiler

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

of machine instructions. The process is complex, for
this reason, we partition the compilation process into
aseries of sub processes called *‘phases.”” A phase is
alogically cohesive operation that takes as input one
representation of the source, program and produces

as output another representation.
Q.2. Attemptany two partsof the following :
10x2=20

(a) How lexical analyzer removes white
spaces from srsource file ? Explain the buffer in-
put scheme for scanning the source program.

Ans. The lexical enalyzer scans the characters
of the source program one at a time to discover to-
kens. Often, however, many characters beyond the
next token may have to be examined before the next
token itself can be determined. For this and other rea-
sons, it is desirable for the lexical analyzer toread its
input from an input buffer. There are many schemes
that can be used to buffer input, and we shall discuss
only one here. Figure shows a buffer divided into tow
halves of, say 100 characters each, One pointer
marks the beginning of the token being discovered, A
lookahead pointer scans shead to the beginning
point, until the token is discovered. We view the posi-
tion of each pointer as being between the character
last read and the character next to be read. In practice,
each buffering scheme adopts one convention; either
a pointer is at the symbol last read or the symbol it is
ready to read.

¥ :

token lockahead
beginning pointer
nput buffer

The distance which the lookahead pointer may
have to travel past the actual token may be large. For
example, in a PL/1 program we may see

DECLARE (ARGI1,ARGZ, ..., ARGn)
without knowing whether DECLARE is a keyword
or an array name until we see the character that fol-
lows the right-parenthesis. In either case, the token it-

self ends at the second E. If the lockahead pointer
travels beyond the buffer half in which it began, the
other half must be loaded with the next characters
from the source file.

Since the buffer of fig. is of limited size, there is
an implited constraint on how much looka head can
be used before the next token is discovered. For ex-
ample, in fig, if the lookahead traveled to the left half
and all the way through the left haif to the middie, we
couid not reload the right half, because we would lose
characters that had not yet been grouped into tokens.
While we can make the buffer larger if we choose or
use another buffering scheme, we cannot ignore the
fact that lookahead is limited.

(b) Develop an algorithm to simulate an NFA
reading an input string. What is time and space
complexity to your algorithm as a function of size
and length of the input string.

Ans. Since an NFA isa finite automata in which
there may exist more than one path corresponding to
xin I, and if this is, indeed, the case, then we are
required to test the multiple paths corresponding to x
in order to decide whether or not x is accepted by the
NFA, because, for the NFA to accept x, at feast one
path corresponding to x is required in the NFA, This
path should start in the initial state and end in one of
the final states. Whereas in a DFA, since there exists
exactly one path corresponding to x in £, it is
enough to test whether or not that path starts in the
initial state and ends in one of the final states in order
to decide whether x is accepted by the DFA or not.

Therefore, if x is a string made of symbols in £
ofthe NFA (i.e., xisintheX’).then x isaccepted by
the NFA if at least one path exists that corresponds to
x in the NFA, which starts in an initial state and ends
in one of the final states of the NFA. Since x is amem-
berof £ " and there may exist zero, one, or more tran-
sitions from a state on an input symbo!, we define a
new transition function, 8), which defines a mapping
from22 x £'to 20; and if 8, ({gg},x) = P, where P
is a set containing at least on¢ metmber of 7, then x is
accepted by the NFA. If x is written as wa, where ais

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

the a last symbol of x,and w is a string made of the re-
maining symbols of x then :

81 ({90 1,%)=58;(81 {90}, w)a) since 8, defines
a mapping from 2= x " 1o

8;1(p, a)=Vpor every qinp K)

For example, consider the finite automata
shown below :

M =({QO 1, 92,93 }' {0"}’8’ qo '{qJ })

where ;
&q0.0)=1g:}. &gy,)=
g, 0)={n}, 8q . D=1g1,92}
Hg2. 0=, 8(q2,1)={g3}
- &q3,0)=1{93} (g3, D=1{q3}

If x = 01t L then to find out whether or not x is
accepted by the NFA, we proceed as follows :
8 ({g0},0)=8gp,0)={g1}
Therefore 8y ({gg 1,01} =8; (8, (1g0}.0)1)
=8 ({q1}.0)=8(q.,1)
={q1. 92}
Therefore
81 ({g0}.011) =8 (3, ({g0 },01),1)
=5l ({QI B QZ}’ 1)
=¥q, Nvélg, D
={q1,q2}\2{g3}
={q1,92:93}
Therefore
By ({g01,0011)=8, (& ({g0}.011).1
=5 ({n.q92.033D)
=8(q(, DV g2, DUb(q3,1)
={n. 92} g {a)
={91,92: 93}

Since 8 ({g9},0111)={q), q;,93} which
contains g3, 8 member of F of the NFA—, hence

x=0111is accepted by the NFA

Therefore, if Mis a NFA, then the Ianguage ac-
cepted by NFA is defined as ;

L(AM Y= {xI8; ({g0}x)= P, where P contains at
least one member of F}

{c) How is finite sutomats useful for lexical
analysis ? Show that the following regular expres-
sions are same by constructing optimized DFA :

@) (a’b)" Giya" /8" Gi) /")
Ans.

i) @by —>

NFA
for (a*/b)*
= »>&2 0
DFA for
. (a*m).
)
—
DFA for
(ap*y
NFA
for (ab*)*
Q. 3. Attempt any two parts of the following :
10x2»~ 20
(a) What do you understand by left factoring

and how it is eliminated ?

Ans, Often the grammar one writes down is not
suitable for recursive-descent parsing, even if there
is no left-recursion. For example, if we have the two
productions.

Statement — if condition then statement else
statement

| if condition then statement

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

we could not, on seeing input symbol if, tell which to
choose toexpand statement. A useful method for ma-
nipulating grammars into a form suitable for recur-
sive-descent parsing is lefi-factoring, the process of
factoring out the common prefixes of alternates.
If A = af | oy are two A productions, and the
input begins with a nonempty string derived from «,
we do not know whether to expand 4 to af or to ay.
We may defer the decision by expanding A to ad’.
Then, after seeing the input derived from &, we ex-
pand A* tofdor to y. That is, left-factored, the original
productions become
A—>ad
A >Bly
(b) Consider the following grammar :
E—-»T+E|T
TV TV
Vsid
Write down the procedures for the non fer-
minals of the grammar to make a recursive de-
scent parser.
Ans. Inthis question we have toremove left re-
cursion. Given grammar is
E->T+E|T
T>viTW
Vid
eliminating the immediate left-recursion (produc-
tions of the form A — Aa)we obtain
E-»TE
E >*TE/e
T-yr
T —*VT/e
Vid
There is no guarantee that one can correctly
chose a path through a transition diagram of the
grammar, although if we eliminate lefi-recurmion
and then left featuring, we have a fair chance of suc-
cess if we dothe following for eachnonterminal A :
(1) Create an initial and final (return) value,

(2) For each production A => X X3 .. X,
create a path from the initial to the final state, with
edges labelled X, X 3,... X,

Transition diagram for
given Grammer

T E!
ForE o e s S)
+ T E?
4
ForT v T
or O O——O
v T
id
ForV L e ———

(¢) Discuss the role of data flow analysis

Ans. A number of optimizations can be
achieved by knowing various pieces of information
that can be obtained only by examining the entire
program. For example if a variable A has value 3 ev-
ery time conirol reaches a certain point p, then we can
substitute 3 for each use of A at p. Knowing that the
valueof A is 3 atp may require examination of the en-
tire program.

The data flor analysis can be used to gather such
information.

Data flow analysis determines information re-
garding the data flow in a program like how data
items are assigned and referenced in a program, what
are the values which are available when program ex-
ecutionreaches a specific statement of the program.

Data flow analysis is basically a process of
computing the values of a set of items of data flow in-
formation which is useful for the purpose of optimi-
zation.

Q. 4. Attempt any two pertsof the following ;

10 x2 =20

(a) Translate the following program frag-

ment into three address code :

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

int i3
i=1
while a <10 do
ifx>ythenga=x+y
elsega=x-y

Ans. int §;
i=1
whilea<10do
ifx>ythena=x+y
elsea=x—p

Three address code :
(1) inti
@ i=|

(3) whilea <10 goto(5)
(4) goto(12)
{5} ifx>ygoto(7)
(6) goto(10)
(N t,=b+c
®) a=q
(9) goto S. next (if S is given expression)
(10} g =x -y
(1) a=1y
{12) exit
(b} Coustruct LL{1} parsing table for the fol-
lowing grammar :
S 4
A= aB|aC| Ad Ae
B S5 bBe| f
Cog
Ans. Given grammar § — 4
A = aB |aC|Ad}Ae
B—bBc| f
 Cog
First (8) = First (A) = {a}
First (B) = {b, f}
First (C) = {g)
Since the grammar is e-free, follow sets are not
required to be computed in order to enter the produc-

tions into the parsing table. Therefore the parsing
table is :
Parsing Table

a b T 2 d
s S A
A A—S A=d
B B-»BC| B
C Cop

{¢) Discuss the important data structures
which are used in implementing symbol table,

Ans. For implementing symbol table we use
following data types :

(1) LIST : The conceptually simplest and easi-
est-.o-implement data structure for a symbol table,
We use single array, or equivalently several arrays to
store names and their associated informatiens. To,
retrive information about a name, we search from the

NAME 1
INFO1

NAME 2
INFO2
»
L
[]

NAME N
INFON

Available
A Linear List of records

beginning of the array upto the position marked by
pointer AVAILABLE,

If the symbol table contains n names, the work
necessary to insert a new name is proportional to n.
To find data about a name we shall, on the average,
searchn/2 names, so the cost of an enquiry isalso pro-
portion to n.

(2) Self Organizing Lists : Atthe cost of a little
extra space we can use a trick that will often save a
substantial fraction of the time spent in searching the
symbol table. We add & LINK field to each record,
and we search the list in the order indicated by the

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

NAME 1
DATA1
LINK1 LiNK 1o
NAME2 NAME2)
DATA2 DATA2
LINK2e LINK2e
First —»{NAME3 [NAME3]
DATA3 DATA3
LINK3#1
INAME4
First {DATA4
_ LINK4 o
Available % Available
(a) {b)
Seif-organizing symbol table

LiNK's. Figure (a) shows an example of a four-name
symbol table. FIRST gives the position of the first re-
cord on the linked list, and each LINK field indicated
the next record on the list, In fig. (a) the order.is
NAME3, NAME1, NAME4, NAME2,

When a name is referenced or its record is first
created, we move the record for that name to the front
of the list by moving pointers. Figure (b) shows the
effect of moving NAMEA4 to the front of the list. In
general, if we search for the find NAME{ we remem-
ber the previous name on the list, say NAMEp, We
temporarily remove entry i from the list by making
LINK p point where LINKi points. Then we make
LINK/ point‘where FIRST points, and finally, we
move NAME(to the front of the list by making
FIRST point to NAME..

(3) Search Trees : A more efficient approach to
symbol-table organization is to add two link fields,
LEFT and RIGHT, to eachrecord. We use these fields
to link the records into binary search tree. This tree
has the property that all names NAME accessible
from NAME; by following the link LEFTiand then
following any sequence of links will precede NAME{
in alphabetical order (symbolicaitly, NAME/ <
NAME3). Similarly, all names NAMEk accessible
starting with RIGHT will have the property that
NAMEi < NAMEk. Thus if we are searching for

NAME and have found the record for NAME{, we
need only follow LEFT/ if NAME < NAME;/ and
need only follow RIGHTi if NAMEi < NAME. Of
course, if NAME = NAME, we have found what we
are looking for fig. gives an algorithm to locok for
NAME in a binary search tree, where P is initially &
pointer to the root.
(1) while P #null do

(2) if NAME = NAME(P) then ../*NAME
found, take action on success*/

(3) else if NAME < NAME(P) then P : =
LEFT(P})

/*visit left child */

(4) else *NAME(P) < NAME */P : =
RIGHT(P)

/* visitright chile */

/*if we fall through the loop, we have failed to
find NAME*/

Fig. Binary tree search routine

IFNAME is found at line (2), P points to NAME'
record. If we fall through the loop, we have failed to
find NAME. Should we wish to insert a new record
for a new name, we check before assigning to P in
lines (3) or (4) that LEFT(P) or RIGHT (P), respec-
tively, is not null. If itis null, then P points to arecord
whose left (resp. right) child should be the record for
the new name,

Ifnames are encountered in a random order, the
average length of a path in the tree will be propor-
tional to log n, where nis the number of names, Since
each search follows one path from the root, the ex-
pected time needed to enter #» names and make m in-
quiries is proportional to (s + m)log n. If n is greater
than about 50, there are clear advantages to the binary
search tree over the linear list and probably over the
linked self-organizing list. If efficiency is para-
mount, however, there is an even better method than
the binary search tree, the hash table

(4) Hash Tables : Many variations of the im-
portant searching technique known as hashing have
been implemented in compilers, Here we shall con-
sider a rather simple variant. Even this scheme gives
us the capability of performing m accesses on n

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

NAME1
DATA1
LINKY »

NAMEZ
DATA2
LINK2 e

NAMES3
DATA3
LINK3 o

Name

hash table

AVAILABLE —» .

Storage table
Hash table

names in time proportional to a(n + m)/ k, for any
constant k of our choosing. Since & can be made as
large as we like, this method is generally superior to
linear lists or search trees and is the method of choice
for symbol tables in most situations, especially if
storage is not particularly costly.

The basic hashing scheme is illustrated in Fig.
Two tables, a hash table and a storage table, are used.
‘The hash table consists of k words, numbered0; 1, ...,
k — L These words are pointers into the storage table
to the heads of k separate linked lists(some lists may
be empty). Each record in the symbol table appears
on exactly one of these lists.

Q. 5. Write short notes on any two of the fol-
lowing sections : 10 x2 =20

(a) Principal sources of optimization

Ans. Principle sonrces of optimization : Code
optimization techniques are generally applied after
syntax analysis, usually both before and during code
generation. The technique consists of detecting pat-
terns in the program and replacing these patterns by
equivalent but more efficient constructs. These pat-
terns may be local or global, and the replacement
strategy may be machine dependent or machine-in-
dependent,

(b} Problems in code generation.

Ans. Problems in Code Generation : [tmight

appear that the task of code generation is now rela-

tively easy. However, difficulties arise in attempting
to perform the computation represented by the inter-
mediate-language program efficiently, using the
available instructions of the target machine. There
are three main sources of difficulty : deciding what
machine instructions to generate, deciding in what
order the computations should be done, and deciding
which regisiers to use.

What Instructions Should We Generate ?

Most machines permit certain computations to
be done in a variety of ways. For example, if our tar-
get machine has an “add-one-to-storage® instruc-
tion (AOS).then for the three-address statement A : =
A + 1 we might generate the single instruction AOS
A, rather than the more cbvious sequence

LOAD A
ADD #1
STORE A

Deciding which machine code sequence is best
for a given three-address construct may require ex-
tensive knowledge about the context in which that
construct appears. We shall have more to say on this
matter when we discuss the choice of registers,

Ins What Order Should We Perform
Computatioas ? .

The second source of difficulty concems the or-
der in which computations should be performed.
Some commutation orders require fewer registers to
hold intermediate resuits than others. Picking the
best order is a very difficult problem in general. Ini-
tially, we shall generate code for the three-address
statements in the order in which they have been pro-
duced by the semantic routines.

What Registers Shorid We Use ?

The final problem that we shall mention is reg-
ister assignment, that is, deciding in which register
each computation should be done. Deciding the opti-
mal assignment of registers to variables is difficalt,
even with single-register quantities. The problem is
further complicated because certain machines re-
quire register-pair (an even and next odd-numbered
register) for some operands and results.

For example, in the IBM System/370 ma-
chines, integer multiplication and integer division

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

involve register pairs. The multiplication instruction
isofthe form MX, Y
where X, the multiplicand, refers to the even register
of an even/odd register pair. The multiplicand itselfis
taken from the odd register of the pair. Y represents
the muitiplier. The product occupies the entire
even/odd register pair.

Division instruction is of the form

DX, Y .
where the 64-bit dividend occupies an even/ odd reg-
ister pair whose even register is X. Y represents the
divisor.After division, the even register hoids the re-
mainder and the odd register the quotient.

(c) Error recovery schemes.

Ans. Panic Mode : Since the details of the re-
covery methods vary somewhat depending on the
type of parsing technique used, we shall examine

" methods for recovering from synthectic errors using

operator precedence, LL and LR Parsers. Before do-
ing so we might mention a crude but effective sys-
tematic method for error recovery in any kind of
parsing, the so-caleld ‘panic mode’ of recovery.

In panic mode a parser discards input symbols
(untill a ‘synchronizing’ token, usually a statement
delimiter such as semicolon or end, is encountered.
The parser then detects stack entries until it finds an
eniry such that it can continue parsing, given the syn-
chronizing token can the input. Two virtues of this re-
covery metiod are that is simpie to implement and -
unlike some insertion schemes, it can never get into
an infinite loop,

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

