
Structures in C

Memory Allocation

1

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

C Structures and Memory Allocation
• There is no class in C, but we may still want non-

homogenous structures
– So, we use the struct construct

• struct for structure

– A struct is a data structure that comprises multiple types, each
known as a member

• each member has its own unique name and a defined type

– Example:
• A student may have members: name (char[]), age (int), GPA (float or

double), sex (char), major (char[]), etc

– If we want to create a structure that can vary in size, we will
allocate the struct on demand and attach it to a previous struct
through pointers

• Here, we examine structs, allocation techniques, and linked structures2

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

The struct Definition
• struct is a keyword for defining a structured

declaration
• Format:

• name represents this structure’s tag and is optional
– we can either provide name
– or after the } we can list variables that will be defined

to be this structure

• We can also use typedef to declare name to be this
structure and use name as if it were a built-in type
– typedef will be covered later in these notes

struct name {
type1 name1;
type2 name2;
…

};

name1 and name2
are members of name

3

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Examples

struct point {
int x;
int y;

};

struct point p1, p2;

p1 and p2 are both
points, containing an
x and a y value

struct {
int x;
int y;

} p1, p2;

p1 and p2 both
have the defined
structure, containing
an x and a y, but
do not have a tag

struct point {
int x;
int y;

} p1, p2;

same as the other
two versions, but
united into one set
of code, p1 and p2
have the tag point

For the first and last sets of code, point is a defined tag and can be used
later (to define more points, or to declare a type of parameter, etc) but in
the middle code, there is no tag, so there is no way to reference more
examples of this structure

4

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Accessing structs

• A struct is much like an array
– The structure stores multiple data

• You can access the individual data, or you can reference the entire
structure

– To access a particular member, you use the . operator
• as in student.firstName or p1.x and p1.y

– we will see later that we will also use - > to reference a field if the struct
is pointed to by a pointer

– To access the struct itself, reference it by the variable name
• Legal operations on the struct are assignment, taking its address with

&, copying it, and passing it as a parameter
– p1 = {5, 10}; // same as p1.x = 5; p1.y = 10;

– p1 = p2; // same as p1.x = p2.x; p1.y = p2.y;

5

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

structs as Parameters
• We may pass structs as parameters and functions can

return structs
– Passing as a parameter:

• void foo(struct point x, struct point y) {…}
– notice that the parameter type is not just the tag, but preceded by the

reserved word struct

– Returning a struct:

struct point createPoint(int a, int b)
{

struct point temp;
temp.x = a;
temp.y = b;
return temp;

}

6

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Inputting a struct in a Function
• We will need to do multiple

inputs for our struct
– Rather than placing all of the

inputs in main, let’s write a
separate function to input all the
values into our struct

• The code to the right does this

– But how do we pass back the
struct?

• Remember C uses pass by copy
– the struct is copied into the

function so that p in the function
is different from y in main

– after inputting the values into p,
nothing is returned and so y
remains {0, 0}

#include <stdio.h>

struct point {
int x;
int y; };

void getStruct(struct point);
void output(struct point);
void main() {

struct point y = {0, 0};
getStruct(y);
output(y); }

void getStruct(struct point p) {
scanf("%d", &p.x);
scanf("%d", &p.y);
printf("%d, %d", p.x, p.y); }

void output(struct point p) {
printf("%d, %d", p.x, p.y); }

7

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

One Solution For Input
• In our previous solution, we passed the struct into the function

and manipulated it in the function, but it wasn’t returned
– Why not? Because what was passed into the function was a copy,

not a pointer
• So structs differ from arrays as structs are not pointed to

• In our input function, we can instead create a temporary struct
and return the struct rather than having a void function

struct point inputPoint()
{

struct point temp;
scanf(“%d”, &temp.x);
scanf(“%d”, &temp.y);
return temp;

}

void main()
{

struct point y = {0, 0};
y = getStruct();
output(y);

}

We could also pass the address of y and treat the struct like an array, we will
see this next, but it requires a change in how we handle the members of the struct

8

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Pointers to Structs
• The previous solution had two flaws:

– It required twice as much memory
• we needed 2 points, one in the input function, one in the function that

called input

– It required copying each member of temp back into the
members of the original struct

• with our point type, that’s not a big deal because there were only two
members, but this may be undesirable when we have a larger struct

– So instead, we might choose to use a pointer to the struct, we
pass the pointer, and then we don’t have to return anything –
scanf will follow the pointer and place the datum in our
original struct

• We see an example next, but first…

• If a is a pointer to a struct, then to access the struct’s
members, we use the - > operator as in a->x

9

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Pointer-based Example
#include <stdio.h>

struct foo { // a global definition, the struct foo is known in all of
int a, b, c; // these functions

};

// function prototypes
void inp(struct foo *); // both functions receive a pointer to a struct foo
void outp(struct foo);

void main() {
struct foo x; // declare x to be a foo
inp(&x); // get its input, passing a pointer to foo
outp(x); // send x to outp, this requires 2 copying actions

}

void inp(struct foo *x)
{ // notice the notation here: &ptr->member

scanf("%d%d%d", &x->a, &x->b, &x->c);
}

void outp(struct foo x) // same notation, but without the &
{

printf("%d %d %d\n", x.a, x.b, x.c);
} 10

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Nested structs
• In order to provide modularity, it is common to use already-

defined structs as members of additional structs

• Recall our point struct, now we want to create a rectangle struct
– the rectangle is defined by its upper left and lower right points

Now consider the following
struct rectangle r, *rp;
rp = &r;

Then the following are all equivalent
r.pt1.x
rp->pt1.x
(r.pt1).x
(rp->pt1).x

But not rp->pt1->x (since pt1 is not a pointer to a point)

struct point {
int x;
int y;

}
struct rectangle {

struct point pt1;
struct point pt2;

}

If we have
struct rectangle r;

Then we can reference
r.pt1.x, r.pt1.y,
r.pt2.x and r.pt2.y 11

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Arrays of structs

• To declare an array of structs (once you have defined the
struct):
– struct rectangle rects[10];
– rects now is a group of 10 structures (that consist each of two

points)
– You can initialize the array as normal where each struct is

initialized as a { } list as in {5, 3} for a point or {{5, 3}, {8,
2}} for a rectangle

• The array of structs will be like the array of classes that
we covered in 260/262, we will use this data structure if
we want to create a database of some kind and apply
such operations as sorting and searching to the structure

12

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Examplestruct point{
int x
int y;

};

struct rectangle {
struct point p1;
struct point p2;

};

void printRect(struct rectangle r)
{

printf("<%d, %d> to <%d, %d>\n", r.p1.x, r.p1.y, r.p2.x, r.p2.y);
}

void main()
{

int i;
struct rectangle rects[] = {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}; // 2 rectangles
for(i=0;i<2;i++) printRect(rects[i]);

}
13

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Memory Allocation
• To this point, we have been declaring pointers and

having them point at already created variables/structures
– However, the primary use of pointers is to create dynamic

structures
• structures that can have data added to them or deleted from them such

that the amount of memory being used is equal to the number of
elements in the structure

• this is unlike an array which is static in size

– An ordinary variable has its memory created at compile time
so is fixed in size

– The pointer can point to a piece of memory that has just been
created (allocated)

– We will use this approach (memory allocation + pointers) to
create data structures like linked lists and trees

Note: in Java, allocation was done whenever you used the new
reserved word as in ClassName x = new ClassName(…); 14

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

malloc and calloc
• The two primary memory allocation operations in c are

malloc and calloc
– The main difference between them is that calloc provide a

chunk of contiguous memory – we will use this for the
creation of an array

– For most situations, we will use malloc, which has the form:
• pointer = (type *) malloc(sizeof(type));
• This sets pointer to point at a newly allocated chunk of memory that is

the type specified and the size needed for that type
– NOTE: pointer will be NULL if there is no more memory to allocate

– The cast may not be needed, but is good practice
– calloc has the form:

• pointer = (type *) calloc(n, sizeof(type)); // n is the size of the array

– Another C instruction is free, to free up the allocated memory
when you no longer need it as in free(pointer); 15

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

calloc example
• The most common use of calloc is for flexible sized arrays (to

change the size)
• free() is used to free the allocated space.

#include <stdio.h>
#include <stdlib.h> // needed for calloc

void main()
{

int i;
int *x, *y; // two pointers to int arrays
x = (int *) calloc(10, sizeof(int)); // x now points to an array of 10 ints
for(i=0;i<10;i++) x[i] = i; // fill the array with values
… // oops, need more room than 10
y = (int *) calloc(20, sizeof(int)); // create an array of 20, temporarily

// pointed to by y
for(i=0;i<10;i++) y[i] = x[i]; // copy old elements of x into y
free(x); // release memory of old array
for(i=10;i<20;i++) y[i] = i; // add the new elements
x = y; // reset x to point at new, bigger array

}

An example of malloc is
given on my web site
rather than here as it is
too large to fit

16

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Unions

17

• Like structures, but every member occupies
the same region of memory!
– Structures: members are “and”ed together: “name

and species and owner”
– Unions: members are “xor”ed together

union VALUE {

float f;

int i;

char *s;

};

/* either a float xor an int xor a string */

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Unions

18

• Up to programmer to determine how to
interpret a union (i.e. which member to access)

• Often used in conjunction with a “type”
variable that indicates how to interpret the
union value

enum TYPE { INT, FLOAT, STRING };

struct VARIABLE {

enum TYPE type;

union VALUE value;

};

Access type to determine
how to interpret value

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Unions

19

• Storage
– size of union is the size of its largest member

– avoid unions with widely varying member sizes;

for the larger data types, consider using pointers
instead

• Initialization
– Union may only be initialized to a value

appropriate for the type of its first member

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Assignment
• Differentiate between arrays and structure

with example.

• Explain how we can nest a structure into
another structure.

• Explain the use of free() in dynamic
memory allocation.

• Differentiate between structure and union.

20

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

