
Structures in C

Memory Allocation
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C Structures and Memory Allocation
• There is no class in C, but we may still want non-

homogenous structures
– So, we use the struct construct

• struct for structure

– A struct is a data structure that comprises multiple types, each
known as a member

• each member has its own unique name and a defined type

– Example:
• A student may have members:  name (char[ ]), age (int), GPA (float or

double), sex (char), major (char[ ]), etc

– If we want to create a structure that can vary in size, we will
allocate the struct on demand and attach it to a previous struct
through pointers

• Here, we examine structs, allocation techniques, and linked structures2

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/


The struct Definition
• struct is a keyword for defining a structured

declaration
• Format:

• name represents this structure’s tag and is optional
– we can either provide name
– or after the } we can list variables that will be defined

to be this structure

• We can also use typedef to declare name to be this
structure and use name as if it were a built-in type
– typedef will be covered later in these notes

struct name {
type1 name1;
type2 name2;
…

};

name1 and name2
are members of name

3
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Examples

struct point {
int x;
int y;

};

struct point p1, p2;

p1 and p2 are both
points, containing an
x and a y value

struct {
int x;
int y;

}  p1, p2;

p1 and p2 both
have the defined
structure, containing
an x and a y, but
do not have a tag

struct  point {
int x;
int y;

}  p1, p2;

same as the other
two versions, but
united into one set
of code, p1 and p2
have the tag point

For the first and last sets of code, point is a defined tag and can be used
later (to define more points, or to declare a type of parameter, etc) but in
the middle code, there is no tag, so there is no way to reference more
examples of this structure

4
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Accessing structs

• A struct is much like an array
– The structure stores multiple data

• You can access the individual data, or you can reference the entire
structure

– To access a particular member, you use the . operator
• as in student.firstName or p1.x and p1.y

– we will see later that we will also use - > to reference a field if the struct
is pointed to by a pointer

– To access the struct itself, reference it by the variable name
• Legal operations on the struct are assignment, taking its address with

&, copying it, and passing it as a parameter
– p1 = {5, 10}; // same as p1.x = 5; p1.y = 10;

– p1 = p2; // same as p1.x = p2.x; p1.y = p2.y;

5
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structs as Parameters
• We may pass structs as parameters and functions can

return structs
– Passing as a parameter:

• void foo(struct point x, struct point y) {…}
– notice that the parameter type is not just the tag, but preceded by the

reserved word struct

– Returning a struct:

struct point createPoint(int a, int b)
{

struct point temp;
temp.x = a;
temp.y = b;
return temp;

}

6
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Inputting a struct in a Function
• We will need to do multiple

inputs for our struct
– Rather than placing all of the

inputs in main, let’s write a
separate function to input all the
values into our struct

• The code to the right does this

– But how do we pass back the
struct?

• Remember C uses pass by copy
– the struct is copied into the

function so that p in the function
is different from y in main

– after inputting the values into p,
nothing is returned and so y
remains {0, 0}

#include <stdio.h>

struct point  {
int x;
int y;  };

void getStruct(struct point);
void output(struct point);
void main( )    {

struct point y = {0, 0};
getStruct(y);
output(y);  }

void getStruct(struct point p)   {
scanf("%d", &p.x);
scanf("%d", &p.y);
printf("%d, %d", p.x, p.y);  }

void output(struct point p)   {
printf("%d, %d", p.x, p.y);  }

7
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One Solution For Input
• In our previous solution, we passed the struct into the function

and manipulated it in the function, but it wasn’t returned
– Why not?  Because what was passed into the function was a copy,

not a pointer
• So structs differ from arrays as structs are not pointed to

• In our input function, we can instead create a temporary struct
and return the struct rather than having a void function

struct point inputPoint( )
{

struct point temp;
scanf(“%d”, &temp.x);
scanf(“%d”, &temp.y);
return temp;

}

void main( )
{

struct point y = {0, 0};
y = getStruct( );
output(y);

}

We could also pass the address of y and treat the struct like an array, we will
see this next, but it requires a change in how we handle the members of the struct

8
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Pointers to Structs
• The previous solution had two flaws:

– It required twice as much memory
• we needed 2 points, one in the input function, one in the function that

called input

– It required copying each member of temp back into the
members of the original struct

• with our point type, that’s not a big deal because there were only two
members, but this may be undesirable when we have a larger struct

– So instead, we might choose to use a pointer to the struct, we
pass the pointer, and then we don’t have to return anything –
scanf will follow the pointer and place the datum in our
original struct

• We see an example next, but first…

• If a is a pointer to a struct, then to access the struct’s
members, we use the - > operator as in a->x

9
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Pointer-based Example
#include <stdio.h>

struct foo  { // a global definition, the struct foo is known in all of
int a, b, c; // these functions

};

//  function prototypes
void inp(struct foo *); // both functions receive a pointer to a struct foo
void outp(struct foo);

void main( )   {
struct foo x; // declare x to be a foo
inp(&x); // get its input, passing a pointer to foo
outp(x); // send x to outp, this requires 2 copying actions

}

void inp(struct foo *x)
{ // notice the notation here:  &ptr->member

scanf("%d%d%d", &x->a, &x->b, &x->c);
}

void outp(struct foo x) // same notation, but without the &
{

printf("%d %d %d\n", x.a, x.b, x.c);
} 10
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Nested structs
• In order to provide modularity, it is common to use already-

defined structs as members of additional structs

• Recall our point struct, now we want to create a rectangle struct
– the rectangle is defined by its upper left and lower right points

Now consider the following
struct rectangle r, *rp;
rp = &r;

Then the following are all equivalent
r.pt1.x
rp->pt1.x
(r.pt1).x
(rp->pt1).x

But not rp->pt1->x (since pt1 is not a pointer to a point)

struct point {
int x;
int y;

}
struct rectangle {

struct point pt1;
struct point pt2;

}

If we have
struct rectangle r;

Then we can reference
r.pt1.x, r.pt1.y,
r.pt2.x and r.pt2.y 11
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Arrays of structs

• To declare an array of structs (once you have defined the
struct):
– struct rectangle rects[10];
– rects now is a group of 10 structures (that consist each of two

points)
– You can initialize the array as normal where each struct is

initialized as a { } list as in {5, 3} for a point or {{5, 3}, {8,
2}} for a rectangle

• The array of structs will be like the array of classes that
we covered in 260/262, we will use this data structure if
we want to create a database of some kind and apply
such operations as sorting and searching to the structure

12
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Examplestruct point{
int x
int y;

};

struct rectangle {
struct point p1;
struct point p2;

};

void printRect(struct rectangle r)
{

printf("<%d, %d> to <%d, %d>\n", r.p1.x, r.p1.y, r.p2.x, r.p2.y);
}

void main( )
{

int i;
struct rectangle rects[ ] = {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}; // 2 rectangles
for(i=0;i<2;i++) printRect(rects[i]);

}
13
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Memory Allocation
• To this point, we have been declaring pointers and

having them point at already created variables/structures
– However, the primary use of pointers is to create dynamic

structures
• structures that can have data added to them or deleted from them such

that the amount of memory being used is equal to the number of
elements in the structure

• this is unlike an array which is static in size

– An ordinary variable has its memory created at compile time
so is fixed in size

– The pointer can point to a piece of memory that has just been
created (allocated)

– We will use this approach (memory allocation + pointers) to
create data structures like linked lists and trees

Note:  in Java, allocation was done whenever you used the new
reserved word as in ClassName x = new ClassName(…); 14
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malloc and calloc
• The two primary memory allocation operations in c are

malloc and calloc
– The main difference between them is that calloc provide a

chunk of contiguous memory – we will use this for the
creation of an array

– For most situations, we will use malloc, which has the form:
• pointer = (type *) malloc(sizeof(type));
• This sets pointer to point at a newly allocated chunk of memory that is

the type specified and the size needed for that type
– NOTE:  pointer will be NULL if there is no more memory to allocate

– The cast may not be needed, but is good practice
– calloc has the form:

• pointer = (type *) calloc(n, sizeof(type)); // n is the size of the array

– Another C instruction is free, to free up the allocated memory
when you no longer need it as in free(pointer); 15
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calloc example
• The most common use of calloc is for flexible sized arrays (to

change the size)
• free() is used to free the allocated space.

#include <stdio.h>
#include <stdlib.h> // needed for calloc

void main()
{

int i;
int *x, *y; // two pointers to int arrays
x = (int *) calloc(10, sizeof(int)); // x now points to an array of 10 ints
for(i=0;i<10;i++) x[i] = i; // fill the array with values
… // oops, need more room than 10
y = (int *) calloc(20, sizeof(int)); // create an array of 20, temporarily

//    pointed to by y
for(i=0;i<10;i++) y[i] = x[i]; // copy old elements of x into y
free(x); // release memory of old array
for(i=10;i<20;i++) y[i] = i; // add the new elements
x = y; // reset x to point at new, bigger array

}

An example of malloc is
given on my web site
rather than here as it is
too large to fit

16
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Unions

17

• Like structures, but every member occupies
the same region of memory!
– Structures: members are “and”ed together: “name

and species and owner”
– Unions: members are “xor”ed together

union VALUE {

float f;

int i;

char *s;

};

/* either a float xor an int xor a string */
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Unions

18

• Up to programmer to determine how to
interpret a union (i.e. which member to access)

• Often used in conjunction with a “type”
variable that indicates how to interpret the
union value

enum TYPE { INT, FLOAT, STRING };

struct VARIABLE {

enum TYPE type;

union VALUE value;

};

Access type to determine
how to interpret value
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Unions

19

• Storage
– size of union is the size of its largest member

– avoid unions with widely varying member sizes;

for the larger data types, consider using pointers
instead

• Initialization
– Union may only be initialized to a value

appropriate for the type of its first member
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Assignment
• Differentiate between arrays and structure

with example.

• Explain how we can nest a structure into
another structure.

• Explain the use of free() in dynamic
memory allocation.

• Differentiate between structure and union.

20
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