POINTERSIN C

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

C Arrays and Pointers

e In C, pointers are more challenging

— You will need to know
» when to use a pointer
» when to dereference the pointer
» when to pass an addressto a variable rather than the variable
itself
» when to use pointer arithmetic to change the pointer
* how to use pointers without making your programs unreadable

— Basically, you have to learn how to not “shoot yourself
In the foot” with pointers

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

The Basics

A pointer is merely an address of where a datum or structureis
stored

— all pointers are typed based on the type of entity that they point to

— to declare apointer, use * preceding the variable name asinint *x;
To set a pointer to a variable’s address use & before the variable
asinx =&Yy,

— & means “return the memory address of”

— In this example, x will now point to y, that is, X stores y’s address
If you access X, you merely get the address
To get the value that x pointsto, use* asin *x

— *X=*x+1,willadd1toy

* Isknown as the indirection (or dereferencing) operator because
It requires a second access

— thatis, thisisaform of indirect addressing

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Example Code

intx =1,y =2, z[10];

int *ip; /[ip isapointer to an int, so it can point to X, y, or an element of z
Ip = &X; // ip now points at the location where X is stored
y =*ip; Il set 'y equal to the value pointed to by ip, or y = x
*Ip=0; // now change the value that ip pointsto to 0, so now x =0
/[but notice that y is unchanged
ip =&2Z[0]; // now ip points at the first location in the array z
*Ip=*ip+1; // the value that ip pointsto (z[0]) isincremented
int X, *y, z, *Q;
X =3;
y = &X,; /1y points to x

printf("%d\n", X);
printf("%d\n", y);
printf("%d\n", *y);

/[outputs 3
// outputs x’s address, will seem like a random number to us
/[outputs what y points to, or x (3)

printf("%d\n", *y+1); // outputs 4 (print out what y pointsto + 1)
printf("%d\n", *(y+1)); /[this outputs the item after X in memory — what isit?
Z=*(&X); Il z equals 3 (what & x points to, which is x)

q=&*y;

// g pointsto 3 - note*& and &* cancel out

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Arrays and Pointers

We declarean array using [| in our declaration following the variable name
— intx[5]; /lunlike Java, we can’t do int[] x;

Y ou must include the size of the array inthe [] when declaring unlessyou are
also initializing the array to its starting values asin:
- intx[]={1 2, 3, 4,5},

— you can also include the size when initializing as long as the size is >= the
number of items being initialized (in which case the remaining array elements are
uninitialized)

Asin Java
— you access array elementsjust asin Javaasin x[4]
— array indicesstart at O

— arra)ts] can be passed as parameters, the type being received would be denoted as
int X

Arraysin C are interesting because they are pointed to

- gle variable that you declarefor the array is actually a pointer to the first array
ement

Y ou can interact with the array elements either through pointers or by using [

]

One of the intriguing features of pointersin C isthe ability to manipulate the
pointers through pointer arithmetic — a pointer is an int value, so we can add
or subtract

— thiswill be used for stepping through arrays rather than using array indices

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Using Pointers with Arrays

Recall in an earlier example, we did
Ip = &2z[0];

This sets our pointer to point at the
first element of the array

— Infact, z isapointer aswell and
we can access z[0] either using
z[O], *ip, or *z

What about accessing z[1]?

— Wecan do z[1] asusual, or we
can add 1 to the location pointed
tobyipor z that is*(ip+1) or
*(z+1)

— Whilewecanresetiptobeip =
Ip+1, we cannot reset zto bez =
z+1

— adding 1 to ip will point to z[1],
butif z=z+ 1werelegal, we
would lose access to the first

array location since z is our
array variable

Notice that ip=ip+1 (or ip++)
moves the pointer 4 bytes
Instead of 1 to point at the
next array location

— thisis done no matter what size
theeement is
 if the array were an array of
doubles, the increment would
move ip to point 8 bytes away,

if the array were chars, then ip
would be 1 byte further

We could declare our arrays
as pointers
— notably, we might do thisfor
our formal parameters asthis

better describes what we are
dealing with)

For Instance

— functionl(int *array) rather than
function1(int[| array)

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Iterating Through the Array

 Here we seetwo waysto iterate through an array, the usual way,
but also a method using pointer arithmetic

int j; int *pj;
for(j =0;j <n; j++) for(pj = & pj <a+n; pj++)
a[j]++; (*pI)++;

» Let’s consider the code on the right:
— pj iIsapointer to an int
— We start with pj pointing at a, that is, pj pointsto g 0]
— Theloop iterateswhilep] <a+n
e pj isapointer, so it isan address
« aisapointer to the beginning of an array of n elements so a+ nisthe size of the

array
* pj++ increments the pointer to point at the next element in the array

« The instruction (*pj)++ says “take what pj points to and increment it”
— NOTE: (*pj)++; increments what pj pointsto, * (pj++); incrementsthe
pointer to point at the next array element
 what do each of thesedo? *pj++;, ++*pj;

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Array Example Using a Pointer

y = &x[0];

printf (" %d\n
printf("%d\n
printf("%d\n
printf("%d\n

y+=2;
*y = 38;
printf("%d\n

*y++;

(*y)++;

printf("%d\n"

printf("%d\n"

printf("%d\n"

printf("%d\n"

", X[0Q]);
" *Y);

' ry+L);
" (Fy)+D);
, ¥ (y+1));
, *Y);

", *y-1);
, *Y);

, *Y);

int X[4] = {12, 20, 39, 43}, *y;

/l'y points to the beginning of the array
/[outputs 12

/[aso outputs 12

/[outputs 13 (12 + 1)

/[aso outputs 13

/l outputs x[1] or 20

/[y now pointsto X[2]

/[prints out 39

Il changes x[2] to 38

Il printsout x[2] - 1 or 37

/] setsy to point at the next array element
I/ outputs x[3] (43)

/[setswhat y pointsto to be 1 greater
/[outputs the new value of x[3] (44)

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Strings

e Thereisno string type, we implement strings as arrays of chars

— char str[10]; I/ strisan array of 10 charsor a string
— I(:har ’;] str; /[str points to the beginning of a string of unspecified
engt

e Thereisastring.h library with numerous string functions
— they all operate on arrays of chars and include:

o strcpy(sl, s2) — copies s2 into sl (including \0” as last char)
strncpy(sl, s2, n) — same but only copies up to n chars of s2

stremp(sl, s2) — returns anegative intif sl < s2, 0 if sl = = s2 and a positive
intif s1>s2

strncmp(sl, s2, n) — same but only compares up to n chars
strcat(sl, s2) — concatenates s2 onto sl (this changes s1, but not s2)
strncat(sl, s2, n) — same but only concatenates up to n chars
strlen(sl) — returns the integer length of sl

strchr(sl, ch) — return a pointer to the first occurrence of chin sl (or NULL if
ch is not present)

strrchr(sl, ch) —same but the pointer points to the last occurrence of ch

strpbrk(sl, s2) — return a pointer to the first occurrence of any character in sl
that matches a character in s2 (or NULL if none are present)

strstr(sl, s2) — substring, return a pointer to the char in sl that starts a substring
that matches s2, or NULL if the substring is not present

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

|mplementing Some of These

int strlen(char *s)
{ .
int n;
for(n = 0; *s 1= “\0’; s++)
n++;
return n;

}

int strcmp(char *s, char *t)
{

inti;

for(i=0;9[i] = =t[i];i++)

if(s[i] ==\0")
return O;

return gi] —t[if;

}

Notice in the second
strcmp and second
and third strcpy the

Int strcmp(char *s, char *t)
{
for(; *s=="*t; s++, t++)
if(*s = = “\0’) return O;
return *s - *t;

}

use of pointersto iterate
through the strings

The conciseness of the last strcmp and strcpy make them

hard to understand

void strcpy(char *s, char *t)
{
inti=0;
while((s[i] = t[i]) '= “\0’)
I++:

void strcpy(char *s, char *t)

{
while((*s = *t) 1= \0")

{
St+:

}

t++;

{
}

void strcpy(char *s, char *t)

while((*s++ = *t++) 1= “\0);

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

More On Pointer Arithmetic

e We can also perform subtraction on pointers

inta[10] ={...};
int *ip;
for(ip = &a[9]; ip >= & ip--)

* Here, we passto afunction the address of the third
element of an array (& a[2]) and use pointer subtraction to
get to g 0] and a[1])

int addem(int *ip)
{

intal3] ={...}; int temp;
printf(“%d”, addem(&a[2])); temp = *ip + *(ip— 1) + *(ip — 2);
return temp;
Recall: }
If aisan array, and p = &g 0] then we can reference array
a[0] = *aand elementsas di], *(p+i), but we can aso reference them as
ali] =*(@+i) p[i] and *(a+i) — that is, aand p are both pointersto the array

And can be dereferenced by * or by []

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Multidimensional Arrays

 AsinJava, C alows multidimensional arrays by using more| |

— Example: int matrix[5][10];
« Some differences:

— Because functions can be compiled separately, we must denote all but one
dimension of a multiple dimensional array in a function’s parameter list

 void afunction(int amatrix[][10]);

— Because arrays are referenced through pointers, there are multiple waysto
declare and access 2+ dimensional arrays
* Thiswill be more relevant when dealing with an array of strings (whichisa?2-D

array)

int a[10][20];
int *a[10];
int**g;

*a[4] —first element of 5" array element
*a[9] —first element of 10" array element
**a—first element of g[0]

int *g[3]; /[array of 3 pointers
int x[2] ={1, 2};

inty[3] ={83, 4, 5};

int z[4] ={6, 7, 8, 9};

*a= &x[0]; I/ 0] pointsto x[O]

*(atl) = &y[0]; /] 1] pointsto y[O]

*(at2) =&z[0]; /] d2] pointsto z[O]

/[array aisajagged array, it is not

I rectangular, or of equal dimensions

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Pointers to Pointers

« Asindicated in thelast dide, we can have an array
of arrayswhich isreally an array of pointers or
pointers to pointers

— We may wish to use pointers to pointers outside of
arrays aswell, although it ismore common that
pointers to pointers represent array of pointers

— Consider the following:

? nt f" We dereference our pointer p with *p but we dereference
Int™p; our pointer to a pointer g with **q

Int **qQ;

a=10; *qisactualy p, so**qisa

p=&a

q=&p;

printf(“%d”, **q); /[outputs 10

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Arrays of Strings Implementation

We could implement an array of strings as a2-D array of chars
— char array[10][10];

This has two disadvantages
— All stringswill be 10 charslong

— Requires 2 nested for-loops for most operations such as string comparison
or string copying, which can become complicated

Instead, we will implement our array of strings as an array of
pointers

— char *array[10];

Each pointer pointsto one string

— Follow the string through the pointer

— Go to the next string using afor-loop

— Because strcpy, stremp, strlen all expect pointers, we can use these by
passing an array element (since each array element is a pointer to a string)

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Example

char *x[] = {"hello\0", "goodbye\0", "so long\0", "thanks for all the fish\0"} ;
// our array of strings x isaset of 4 pointers
char *y; // lety be apointer to achar so it can be used to move through a single string
inti;
for(i=0;i<4;i++) /[iteratefor each string in X

{
y =X[i]; /I x[i] is an array, X is really a pointer, so this sets y to x’s starting addr.
while(*y!="0" // while the thing y points to is not the end of a string
{
printf("%c", *v); Il print what y points to
y++; /[and go on to the next char in x
}
printf("\n"); Il separate strings in output with \n
}

» Notice that if we had used char X[][] = {...}; then the storage
space would have been 4 strings of length 23 (the length of the
longest string) or 92 bytes instead of 42 bytesasit is above

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Passing Arrays

« Whenanarray ispassedto * Becauseyou can compile

afunction, what is being functions separately, the
passed is a pointer to the compiler must be ableto
array “know” about an array being
— Intheformal parameter list, passed in to afunction, so you
you can either specify the must specify all (or most) of
parameter as an array or a the definition:
pointer — Thetype and all dimensions
_ except for the first
int array[100]; _
int array[5][10][15];

afunction(array); afunction(array);

void afunction(int a[]J[10][15]) {...} or
void afunction(int *a[10][15]) {...} or
void afunction(int a[5][10][15]) {...} or
void afunction(int **a[15]) {...} etc

void afunction(int *a) {...}
or
void afunction(inta[]) {...}

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Assignment

* \What do you mean by pointers? What are
the disadvantages of using pointers?

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

