
POINTERS IN C

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

C Arrays and Pointers

• In C, pointers are more challenging
– You will need to know

• when to use a pointer
• when to dereference the pointer
• when to pass an address to a variable rather than the variable

itself
• when to use pointer arithmetic to change the pointer
• how to use pointers without making your programs unreadable

– Basically, you have to learn how to not “shoot yourself
in the foot” with pointers

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

The Basics
• A pointer is merely an address of where a datum or structure is

stored
– all pointers are typed based on the type of entity that they point to
– to declare a pointer, use * preceding the variable name as in int *x;

• To set a pointer to a variable’s address use & before the variable
as in x = &y;
– & means “return the memory address of”
– in this example, x will now point to y, that is, x stores y’s address

• If you access x, you merely get the address
• To get the value that x points to, use * as in *x

– *x = *x + 1; will add 1 to y

• * is known as the indirection (or dereferencing) operator because
it requires a second access
– that is, this is a form of indirect addressing

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Example Code
int x = 1, y = 2, z[10];
int *ip; // ip is a pointer to an int, so it can point to x, y, or an element of z

ip = &x; // ip now points at the location where x is stored
y = *ip; // set y equal to the value pointed to by ip, or y = x
*ip = 0; // now change the value that ip points to to 0, so now x = 0

// but notice that y is unchanged
ip = &z[0]; // now ip points at the first location in the array z

*ip = *ip + 1; // the value that ip points to (z[0]) is incremented

int x, *y, z, *q;
x = 3;
y = &x; // y points to x
printf("%d\n", x); // outputs 3
printf("%d\n", y); // outputs x’s address, will seem like a random number to us
printf("%d\n", *y); // outputs what y points to, or x (3)
printf("%d\n", *y+1); // outputs 4 (print out what y points to + 1)
printf("%d\n", *(y+1)); // this outputs the item after x in memory – what is it?
z = *(&x); // z equals 3 (what &x points to, which is x)
q = &*y; // q points to 3 – note *& and &* cancel out

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Arrays and Pointers
• We declare an array using [] in our declaration following the variable name

– int x[5]; // unlike Java, we can’t do int[] x;
• You must include the size of the array in the [] when declaring unless you are

also initializing the array to its starting values as in:
– int x [] = {1, 2, 3, 4, 5};
– you can also include the size when initializing as long as the size is >= the

number of items being initialized (in which case the remaining array elements are
uninitialized)

• As in Java
– you access array elements just as in Java as in x[4]
– array indices start at 0
– arrays can be passed as parameters, the type being received would be denoted as

int x[]
• Arrays in C are interesting because they are pointed to

– the variable that you declare for the array is actually a pointer to the first array
element

• You can interact with the array elements either through pointers or by using [
]

• One of the intriguing features of pointers in C is the ability to manipulate the
pointers through pointer arithmetic – a pointer is an int value, so we can add
or subtract
– this will be used for stepping through arrays rather than using array indices

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Using Pointers with Arrays
• Recall in an earlier example, we did

ip = &z[0];
• This sets our pointer to point at the

first element of the array
– In fact, z is a pointer as well and

we can access z[0] either using
z[0], *ip, or *z

• What about accessing z[1]?
– We can do z[1] as usual, or we

can add 1 to the location pointed
to by ip or z, that is *(ip+1) or
*(z+1)

– While we can reset ip to be ip =
ip+1, we cannot reset z to be z =
z+1

– adding 1 to ip will point to z[1],
but if z = z + 1 were legal, we
would lose access to the first
array location since z is our
array variable

• Notice that ip=ip+1 (or ip++)
moves the pointer 4 bytes
instead of 1 to point at the
next array location
– this is done no matter what size

the element is
• if the array were an array of

doubles, the increment would
move ip to point 8 bytes away,
if the array were chars, then ip
would be 1 byte further

• We could declare our arrays
as pointers
– notably, we might do this for

our formal parameters as this
better describes what we are
dealing with)

• For instance
– function1(int *array) rather than

function1(int[] array)

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Iterating Through the Array
• Here we see two ways to iterate through an array, the usual way,

but also a method using pointer arithmetic

• Let’s consider the code on the right:
– pj is a pointer to an int
– We start with pj pointing at a, that is, pj points to a[0]
– The loop iterates while pj < a + n

• pj is a pointer, so it is an address
• a is a pointer to the beginning of an array of n elements so a + n is the size of the

array
• pj++ increments the pointer to point at the next element in the array
• The instruction (*pj)++ says “take what pj points to and increment it”

– NOTE: (*pj)++; increments what pj points to, *(pj++); increments the
pointer to point at the next array element

• what do each of these do? *pj++; ++*pj;

int j;
for(j = 0; j < n; j++)

a[j]++;

int *pj;
for(pj = a; pj < a + n; pj++)

(*pj)++;

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Array Example Using a Pointer

int x[4] = {12, 20, 39, 43}, *y;
y = &x[0]; // y points to the beginning of the array
printf("%d\n", x[0]); // outputs 12
printf("%d\n", *y); // also outputs 12
printf("%d\n", *y+1); // outputs 13 (12 + 1)
printf("%d\n", (*y)+1); // also outputs 13
printf("%d\n", *(y+1)); // outputs x[1] or 20
y+=2; // y now points to x[2]
printf("%d\n", *y); // prints out 39
*y = 38; // changes x[2] to 38
printf("%d\n", *y-1); // prints out x[2] - 1 or 37
*y++; // sets y to point at the next array element
printf("%d\n", *y); // outputs x[3] (43)
(*y)++; // sets what y points to to be 1 greater
printf("%d\n", *y); // outputs the new value of x[3] (44)

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Strings
• There is no string type, we implement strings as arrays of chars

– char str[10]; // str is an array of 10 chars or a string
– char *str; // str points to the beginning of a string of unspecified

length
• There is a string.h library with numerous string functions

– they all operate on arrays of chars and include:
• strcpy(s1, s2) – copies s2 into s1 (including ‘\0’ as last char)
• strncpy(s1, s2, n) – same but only copies up to n chars of s2
• strcmp(s1, s2) – returns a negative int if s1 < s2, 0 if s1 = = s2 and a positive

int if s1 > s2
• strncmp(s1, s2, n) – same but only compares up to n chars
• strcat(s1, s2) – concatenates s2 onto s1 (this changes s1, but not s2)
• strncat(s1, s2, n) – same but only concatenates up to n chars
• strlen(s1) – returns the integer length of s1
• strchr(s1, ch) – return a pointer to the first occurrence of ch in s1 (or NULL if

ch is not present)
• strrchr(s1, ch) – same but the pointer points to the last occurrence of ch
• strpbrk(s1, s2) – return a pointer to the first occurrence of any character in s1

that matches a character in s2 (or NULL if none are present)
• strstr(s1, s2) – substring, return a pointer to the char in s1 that starts a substring

that matches s2, or NULL if the substring is not present

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Implementing Some of These

int strlen(char *s)
{

int n;
for(n = 0; *s != ‘\0’; s++)

n++;
return n;

}
void strcpy(char *s, char *t)
{

while((*s = *t) != ‘\0’)
{

s++; t++;
}

}

void strcpy(char *s, char *t)
{

while((*s++ = *t++) != ‘\0’);
}

void strcpy(char *s, char *t)
{

int i = 0;
while((s[i] = t[i]) != ‘\0’)

i++;
}

int strcmp(char *s, char *t)
{

int i;
for(i=0;s[i] = = t[i];i++)

if(s[i] = = ‘\0’)
return 0;

return s[i] – t[i];
}

Notice in the second
strcmp and second
and third strcpy the
use of pointers to iterate
through the strings

The conciseness of the last strcmp and strcpy make them
hard to understand

int strcmp(char *s, char *t)
{

for(; *s = = *t; s++, t++)
if(*s = = ‘\0’) return 0;

return *s - *t;
}

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

More On Pointer Arithmetic
• We can also perform subtraction on pointers

• Here, we pass to a function the address of the third
element of an array (&a[2]) and use pointer subtraction to
get to a[0] and a[1])

int a[10] = {…};
int *ip;
for(ip = &a[9]; ip >= a; ip--)

…

int a[3] = {…};
printf(“%d”, addem(&a[2]));

int addem(int *ip)
{

int temp;
temp = *ip + *(ip – 1) + *(ip – 2);
return temp;

}
Recall:

a[0] = *a and
a[i] = *(a + i)

If a is an array, and p = &a[0] then we can reference array
elements as a[i], *(p+i), but we can also reference them as
p[i] and *(a+i) – that is, a and p are both pointers to the array
And can be dereferenced by * or by []

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Multidimensional Arrays
• As in Java, C allows multidimensional arrays by using more []

– Example: int matrix[5][10];
• Some differences:

– Because functions can be compiled separately, we must denote all but one
dimension of a multiple dimensional array in a function’s parameter list

• void afunction(int amatrix[][10]);

– Because arrays are referenced through pointers, there are multiple ways to
declare and access 2+ dimensional arrays

• This will be more relevant when dealing with an array of strings (which is a 2-D
array)

int a[10][20];
int *a[10];
int **a;

*a[4] –first element of 5th array element
*a[9] –first element of 10th array element
**a –first element of a[0]

int *a[3]; // array of 3 pointers
int x[2] = {1, 2};
int y[3] = {3, 4, 5};
int z[4] = {6, 7, 8, 9};
*a = &x[0]; // a[0] points to x[0]
*(a+1) = &y[0]; // a[1] points to y[0]
*(a+2) = &z[0]; // a[2] points to z[0]
// array a is a jagged array, it is not
// rectangular, or of equal dimensions

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Pointers to Pointers
• As indicated in the last slide, we can have an array

of arrays which is really an array of pointers or
pointers to pointers
– We may wish to use pointers to pointers outside of

arrays as well, although it is more common that
pointers to pointers represent array of pointers

– Consider the following:

int a;
int *p;
int **q;
a = 10;
p = &a;
q = &p;
printf(“%d”, **q); // outputs 10

We dereference our pointer p with *p but we dereference
our pointer to a pointer q with **q

*q is actually p, so **q is a

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Arrays of Strings Implementation
• We could implement an array of strings as a 2-D array of chars

– char array[10][10];

• This has two disadvantages
– All strings will be 10 chars long

– Requires 2 nested for-loops for most operations such as string comparison
or string copying, which can become complicated

• Instead, we will implement our array of strings as an array of
pointers
– char *array[10];

• Each pointer points to one string
– Follow the string through the pointer

– Go to the next string using a for-loop

– Because strcpy, strcmp, strlen all expect pointers, we can use these by
passing an array element (since each array element is a pointer to a string)

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Example

• Notice that if we had used char x[][] = {…}; then the storage
space would have been 4 strings of length 23 (the length of the
longest string) or 92 bytes instead of 42 bytes as it is above

char *x[] = {"hello\0", "goodbye\0", "so long\0", "thanks for all the fish\0"};
// our array of strings x is a set of 4 pointers

char *y; // let y be a pointer to a char so it can be used to move through a single string
int i;
for(i=0;i<4;i++) // iterate for each string in x
{

y = x[i]; // x[i] is an array, x is really a pointer, so this sets y to x’s starting addr.
while(*y!='\0') // while the thing y points to is not the end of a string
{

printf("%c", *y); // print what y points to
y++; // and go on to the next char in x

}
printf("\n"); // separate strings in output with \n

}

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Passing Arrays

• When an array is passed to
a function, what is being
passed is a pointer to the
array
– In the formal parameter list,

you can either specify the
parameter as an array or a
pointer

• Because you can compile
functions separately, the
compiler must be able to
“know” about an array being
passed in to a function, so you
must specify all (or most) of
the definition:
– The type and all dimensions

except for the first
int array[100];
…
afunction(array);
…

void afunction(int *a) {…}
or
void afunction(int a[]) {…}

int array[5][10][15];
…
afunction(array);
…
void afunction(int a[][10][15]) {…} or
void afunction(int *a[10][15]) {…} or
void afunction(int a[5][10][15]) {…} or
void afunction(int **a[15]) {…} etc

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Assignment

• What do you mean by pointers? What are
the disadvantages of using pointers?

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

